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Do We Program?

I We write code, but do we program?
I Theoretical CS is practical and IT is... boring?
I What problems do we solve in IT?
I Be lazy, and make them interesting!
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This Counts

C in
return a + b;

asm out
movl -4(%rbp), %edx
movl -8(%rbp), %eax
addl %edx, %eax
...
ret
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This Counts Too

High level? What about C Preprocessor?

#ifdef MORNING
#define hello(x) Good morning, x!

#else
#define hello(x) Hello, x!

#endif

hello(Geeks)
hello(Nerds)
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This Counts Too

High level? What about C Preprocessor?

$ cpp hello.c |egrep -v '^#|^$'
Hello, Geeks!
Hello, Nerds!

$ cpp -DMORNING hello.c |egrep -v '^#|^$'
Good morning, Geeks!
Good morning, Nerds!
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These Count Too

I Macros
I Generics
I iota in Go
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Now We Are Talking

Figure 1: OAPI yaml input, 43 lines
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Now We Are Talking

Figure 2: Go boilerplate, 351 lines
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They Are Everywhere

From classic Unix tools to Go and k8s. We’ll see.
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Let’s Begin

I No evangelism
I But they are there
I Possibilities? Limitations? Pitfalls?
I Specifics of any tool available in docs, sites, books, etc.
I What lacks is a bird’s eye view, and we are doing it
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Passion

I I like declarative creation and generators
I Graphviz, LaTeX, etc.
I Custom text-to-HTML converter for my first book
I Used annotated source and Doxygen to fill my project reports

I Makes us focus on the content and semantics
I The source is usually human readable text

I Never goes obsolete
I Easy to write tools for
I Easy to search and update (automate with regex)

I Precision and control? Sometimes more, sometimes less.
I Reproducible (for graphics and infra; programming, even imperative, already

is)
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Lang vs Codegen

Why don’t pick a supreme language?

I Languages like C, Go, Java and Python need to be general or domain-specific
I Code generators can be problem-specific
I Less tradeoffs

I Dilemma:
I Great lang, lacks something (Go before generics)
I Great lang, bad syntax
I Bad lang, no choice (existing codebase)

I Who said code generators can’t be languages?
I m4, T4 and PHP

I Not just to overcome lang limitations (e.g.: OpenAPI)
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Pros at a Glance

I Outsource boilerplating
I Get started easily and improve it later
I Keep the code consistent
I Memory safety -- example follows
I Security (OpenAPI validations)
I Shared code where librarification will be hard or less efficient
I Microservices (lots of shared code)
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OpenAPI Workflow

+---------+ oapi-codegen +--------------+
| api.yml | ------------------> | api.gen.go | ---+
+---------+ +--------------+ | +-----------+

| +---> | apiserv |
| +--------------+ | +-----------+
| | handlers.go | ---+
| +--------------+
|
|
| openapi-generator -g html +-----------+
+--------------------------------------------------> | html doc |

+-----------+

1Figure 3: OpenAPI: spec to code and doc
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Demo: Calc API -- Spec
Remember?

Figure 4: OAPI yaml input, 43 lines
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Demo: Calc API -- Handwritten

Hand-written handlers:

func (calc Calc) GetCalcSum(w http.ResponseWriter,
r *http.Request,
params GetCalcSumParams) {

fmt.Fprintf(w, "%d\n", params.X + params.Y)
}

func (calc Calc) GetCalcDiff(w http.ResponseWriter,
r *http.Request,
params GetCalcDiffParams) {

fmt.Fprintf(w, "%d\n", params.X - params.Y)
}
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Demo: Calc API -- Auto-gen

Auto-generated structs for marshalling/unmarshalling:

// GetCalcDiffParams defines parameters for GetCalcDiff.
type GetCalcDiffParams struct {

X int `form:"x" json:"x"`
Y int `form:"y" json:"y"`

}

// GetCalcSumParams defines parameters for GetCalcSum.
type GetCalcSumParams struct {

X int `form:"x" json:"x"`
Y int `form:"y" json:"y"`

}
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Demo: Calc API -- Auto-gen

Auto-generated interface:

// ServerInterface represents all server handlers.
type ServerInterface interface {

// (GET /calc/diff)
GetCalcDiff(w http.ResponseWriter,

r *http.Request, params GetCalcDiffParams)

// (GET /calc/sum)
GetCalcSum(w http.ResponseWriter,

r *http.Request, params GetCalcSumParams)
}
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Demo: Calc API -- Auto-gen

Auto-generated validation and error messages in action:

$ curl 'localhost:8080/calc/diff?y=12'

parameter "x" in query has an error: \
value is required but missing

$ curl 'localhost:8080/calc/diff?x=10&y=someString'

parameter "y" in query has an error: \
value someString: an invalid integer: invalid syntax
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OpenAPI Generator Types

I Server types, interfaces, validators, etc.
I Client SDK
I Documentation
I Database schema
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Boilerplate: Even Inline

gtk_widget_set_tooltip_text(
GTK_WIDGET(btn_run),
"Run the command");

gtk_container_add(GTK_CONTAINER(vbox1),
GTK_WIDGET(btn_run));

gtk_widget_show(GTK_WIDGET(btn_run));
gtk_widget_show_all(GTK_WIDGET(vbox1));

I Casting
I Error checks
I Initialization and finalization
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Example: Stringify C Enum Manually

// XXX Manually keep in sync with the array opstr
typedef enum Operation {

OP_SUM,
OP_DIFF,
OP_LARGEST,
OP_SMALLEST,

} Operation;

// XXX Manually keep in sync with the enum
const char * opstr[] = {

"OP_SUM",
"OP_DIFF",
"OP_LARGEST",
"OP_SMALLEST" };
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Example: Stringify C Enum Manually

Problems?

I Chance for inconsistency is highly
I Incorrect debug messages and logs, without anybody realizing
I SEGFAULT if you forget to update opstr after growing the enum
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Example: Stringify C Enum With sed

opstr.gen.h: main.c
(echo '// Do not edit this file!' &&\

echo 'const char * opstr[] = { ' &&\
grep -E '^\s*OP_[A-Z]+,$$' main.c|\

sed -E 's/^\s*(OP_[A-Z]+),$$/ "\1",/' &&\
echo '};') > opstr.gen.h
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So...

I Consistency -- guaranteed
I Better than handwritten code, if done right:

I Maintainability
I Security

I Productivity -- esp. if somebody else wrote the generator
I Fun, mayhem and fun again -- if you have to write the generator
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Tools

I Compiler compilers: lex, yacc, etc.
I Transpilers
I Build system generators: Automake, CMake, qmake, etc.
I GUI builders: Glade, Qt Designer, etc.
I Configuration generators: update-grub
I From the Web world

I CSS: SaSS, LESS, Stylus
I k8s: kompose, kustomize, helm, etc.

I Interface/binding generators: SIP for Python (used for PyQt, wxPython, etc.)
I PyBindGen, SWIG, etc.

I Flexible: Telosys from Eclipse (DB/model to any kind of code based on
templates)

I protoc with gRPC Go plugin

Truth: I’m yet to try some of the above.
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go generate and stringer

Remember the C enum stringification example?

Examples for go generate and stringer: go.dev/blog/generate

Other uses for go generate
... generating Unicode tables in the unicode package, creating efficient
methods for encoding and decoding arrays in encoding/gob, producing
time zone data in the time package, and so on.

-- Rob Pike

https://go.dev/blog/generate
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m4

I A general-purpose macro processor fom 70s
I Not because the first, but because still alive
I History of macro processors:

www.gnu.org/software/m4/manual/html_node/History.html
I m4 was used for Raftor preprocessor, a FORTRAN dialect

https://www.gnu.org/software/m4/manual/html_node/History.html
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Cons

I Ugly code - hard to read and debug
I Extreme examples: output generated by lex and bison
I Not even gdb can help
I Ask: why ugly (efficiency?), and is it worth it?

I Less efficient
I Tools have to be general; hard to optimize individual cases

I Bad error reporting (auto-generated lexers and parsers)
I You don’t know what’s happening behind the scenes

I You still don’t know what’s happening behind the scenes when you write
everything manually.

Some major compilers and interpreters use handwritten parsers.
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Pro or Con?

I Declarative
I Makes sure we have some kind of spec for our software
I Same spec ruined to work aroud generator limitations



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Legal

I What is the license of the generated code?
I GCC exception: www.gnu.org/licenses/gcc-exception-3.1.html
I GitHub Copilot controversy

I Because it was trained using codebase under non-public-domain licenses
I Not the kind of code generator we are talking about, BTW.

https://www.gnu.org/licenses/gcc-exception-3.1.html
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Never for Database

I Not something you want to put it in a pipeline
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Tests Are Important

I What if a you forget to enable the OAPI validation flags or middleware?
I What if a flag changes in a future release of the generator?

That’s why tests and assertions are important.
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Auto-generate Tests?

I Could be a bad idea
I Go does this, but only to invoke our tests, AFAIK
I Auto-generated tests used to detect compiler bugs

I Compare with the outputs of other compiler
I Did I read it in a paper about CompCert (Coq-based C compiler)?

I If doing,
I write a totally independent program
I verify and lock the code manually
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Tips

I Make it reproducible, if not too much trouble
I Prefer annotations over edits (will explain soon)
I Patch if needed
I Generated code: push or .gitignore?
I Linters and other static analysis tools
I indent, gofmt, etc.
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kompose Experience

I What kompose is
I Convert once, forget the source -- okay.
I What if both docker-compose.yml and k8s are needed?

I How to sync? Put in a pipeline.
I What about the edits?
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kompose Experience

What about the edits?

Maybe kompose annotations will help:

I kompose.image-pull-policy
I kompose.image-pull-secret, etc.
I etc.
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kompose Experience

When annotations didn’t help...

I k8s services for Docker Compose services
I kompose generates them only if ports are exposed, AFAIK
I Just wrote a custom script

I initContainers
I Directly under services in docker-compose.yml, under

spec.template.spec.initContainers in k8s deployment.yaml
I Used patch files

40a41,45
> "initContainers": [
> {
> "image": "REGISTRY/REPO/myapp",
> "name": "myapp-con"
> } ],
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What It Is

I A programming language
I A transpiler/code generator
I Self-hosted
I Targets:

I C/GTK: usable
I C++/Qt, Web: at infancy
I Android: worked once, needs restart
I Other: Go, Java, etc.

I Unreleased, but the plan is to go libre
I Similar (or not similar): Vala, Haxel, Nim, etc.
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ngg for GUI: the Source

Figure 5: Source code of an ngg GUI program
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ngg for GUI: C/GTK

Figure 6: C/GTK generated code
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ngg for GUI: C++/Qt

Figure 7: C++/Qt generated code
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ngg for GUI: Screenshots

Figure 8: GTK and Qt screenshots
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ngg for GUI: Auto-generated Test

Figure 9: Auto-generated C/GTK test
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ngg for GUI: Theeram

Figure 10: Theeram C to ngg migration, WIP
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Origins of nguigen (1)

I Early dreams of own OS and programming languages
I Passion for C, but pitfalls and productivity issues
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Origins of nguigen (2)

Figure 11: My Early PyGTK Works
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Origins of nguigen (2)

I Publishing PyGTK apps since 2012 or before
I Thousands of school elections with Sammaty (20k downloads); not that I’m

proud of
I Migration to C
I Parallel Web versions
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Origins of nguigen (2)

I Desktop development frustrations
I Differences in operating systems, desktops, different versions of the same GUI

toolkit
I Low productivity
I How do I solve this without inventing one more framework?
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Origins of nguigen (3)

C days...

What I ought to think about:

I Data structures
I Algorithms
I Programming methodologies and paradigms

What I was forced to think about:

I Overflows, underflows, memory leaks, etc.

What showed up always:

I SEGFAULT
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nguigen: malloc() error check

ngg
local person new Person;

C output
Person * person = malloc(sizeof(Person));
if(person == NULL) {

perror(NULL);
exit(EXIT_FAILURE);

}
local offers:
Destruction and de-allocation of a local object Destruction and de-allocation of
member object Setting invalid pointers back to NULL
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Syntactic Sugar

Just an example...

ngg
if in targlang .[CXX, GO, JAVA]\Lang

=puts/['Language supports generics.'];;

C output
if( targlang == LANG_CXX ||

targlang == LANG_GO ||
targlang == LANG_JAVA )

{
puts("Language supports generics.");

}
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nguigen: Simplified Programming

I Compile-time semi-automatic memory management
I Can I go the Rust way?

I No explicit pointers
I Casting to base class made easy in C (think: GTK)
I Restricted for loop
I Ergonomic syntax (less Shift key)
I Currently: class objs always in heap and struct objs always in stack
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nguigen: Sophisticated Macro Processing

I Imlining -- inline before you get the C code
I Shadow classes -- wrap or customize external method calls
I Verbose lines
I Conditional code generation
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Codegen in the nguigen Ecosystem

I nguigen is created with:
I custom lexer generator
I custom parser generator
I AWK, sed, etc.: mapping-related code from tsv files (e.g.: data types)
I Makefile parts generated with ngg itself and bash

I ngg to GTK, Qt, etc. mapping: interfaces and shadow classes with h2ngg
and PHP
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Data Type Mapping

Figure 12: TSV file that maps ngg types to C, Java, etc. (WIP)
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Data Type Mapping

Figure 13: Type strings generated from the TSV using AWK
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Data Type Mapping

Type constants generated from the TSV using AWK:

typedef enum NggDtypetype {
NGG_DTYPETYPE_UNKNOWN,
NGG_DTYPETYPE_THIS_BAKE,
NGG_DTYPETYPE_SUBTYPE,
NGG_DTYPETYPE_BOOL,
NGG_DTYPETYPE_SCHAR,
NGG_DTYPETYPE_CHAR,
NGG_DTYPETYPE_DOUBLE,
NGG_DTYPETYPE_FLOAT,
NGG_DTYPETYPE_INT,
...



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Done So Far

I Parser generator (ngg + PHP)
I Lexer generator

I gitlab.com/nandedamana/nlexgen
I Self-hosted transpiler
I h2ngg (we will see)
I Syntax highlighting in gedit

https://gitlab.com/nandedamana/nlexgen
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h2ngg

Figure 14: h2ngg converting GTK headers
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Test Suit

Figure 15: C/GTK Test Suit Runner written in nguigen (system GTK theme:
cdetheme-solaris)
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Write Your Own

I There is no general solution; write your own!
I How?
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Demo Repo

https://github.com/nandedamana/lazy-becomes-prolific

Currently contains oapi-codegen-demo and some trivial stuff included in this
presentation.

https://github.com/nandedamana/lazy-becomes-prolific
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