
Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Code Generation
How the Lazy Becomes the Prolific

Nandakumar Edamana



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The EndIntro



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Do We Program?

I We write code, but do we program?
I Theoretical CS is practical and IT is... boring?
I What problems do we solve in IT?
I Be lazy, and make them interesting!



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The EndCode Generators



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

This Counts

C in
return a + b;

asm out
movl -4(%rbp), %edx
movl -8(%rbp), %eax
addl %edx, %eax
...
ret



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

This Counts Too

High level? What about C Preprocessor?

#ifdef MORNING
#define hello(x) Good morning, x!

#else
#define hello(x) Hello, x!

#endif

hello(Geeks)
hello(Nerds)



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

This Counts Too

High level? What about C Preprocessor?

$ cpp hello.c |egrep -v '^#|^$'
Hello, Geeks!
Hello, Nerds!

$ cpp -DMORNING hello.c |egrep -v '^#|^$'
Good morning, Geeks!
Good morning, Nerds!



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

These Count Too

I Macros
I Generics
I iota in Go



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Now We Are Talking

Figure 1: OAPI yaml input, 43 lines



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Now We Are Talking

Figure 2: Go boilerplate, 351 lines



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

They Are Everywhere

From classic Unix tools to Go and k8s. We’ll see.



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Let’s Begin

I No evangelism
I But they are there
I Possibilities? Limitations? Pitfalls?
I Specifics of any tool available in docs, sites, books, etc.
I What lacks is a bird’s eye view, and we are doing it



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The EndWhy (With Examples)



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Passion

I I like declarative creation and generators
I Graphviz, LaTeX, etc.
I Custom text-to-HTML converter for my first book
I Used annotated source and Doxygen to fill my project reports

I Makes us focus on the content and semantics
I The source is usually human readable text

I Never goes obsolete
I Easy to write tools for
I Easy to search and update (automate with regex)

I Precision and control? Sometimes more, sometimes less.
I Reproducible (for graphics and infra; programming, even imperative, already

is)



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Lang vs Codegen

Why don’t pick a supreme language?

I Languages like C, Go, Java and Python need to be general or domain-specific
I Code generators can be problem-specific
I Less tradeoffs

I Dilemma:
I Great lang, lacks something (Go before generics)
I Great lang, bad syntax
I Bad lang, no choice (existing codebase)

I Who said code generators can’t be languages?
I m4, T4 and PHP

I Not just to overcome lang limitations (e.g.: OpenAPI)



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Pros at a Glance

I Outsource boilerplating
I Get started easily and improve it later
I Keep the code consistent
I Memory safety -- example follows
I Security (OpenAPI validations)
I Shared code where librarification will be hard or less efficient
I Microservices (lots of shared code)



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

OpenAPI Workflow

+---------+ oapi-codegen +--------------+
| api.yml | ------------------> | api.gen.go | ---+
+---------+ +--------------+ | +-----------+

| +---> | apiserv |
| +--------------+ | +-----------+
| | handlers.go | ---+
| +--------------+
|
|
| openapi-generator -g html +-----------+
+--------------------------------------------------> | html doc |

+-----------+

1Figure 3: OpenAPI: spec to code and doc



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Demo: Calc API -- Spec
Remember?

Figure 4: OAPI yaml input, 43 lines



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Demo: Calc API -- Handwritten

Hand-written handlers:

func (calc Calc) GetCalcSum(w http.ResponseWriter,
r *http.Request,
params GetCalcSumParams) {

fmt.Fprintf(w, "%d\n", params.X + params.Y)
}

func (calc Calc) GetCalcDiff(w http.ResponseWriter,
r *http.Request,
params GetCalcDiffParams) {

fmt.Fprintf(w, "%d\n", params.X - params.Y)
}



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Demo: Calc API -- Auto-gen

Auto-generated structs for marshalling/unmarshalling:

// GetCalcDiffParams defines parameters for GetCalcDiff.
type GetCalcDiffParams struct {

X int `form:"x" json:"x"`
Y int `form:"y" json:"y"`

}

// GetCalcSumParams defines parameters for GetCalcSum.
type GetCalcSumParams struct {

X int `form:"x" json:"x"`
Y int `form:"y" json:"y"`

}



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Demo: Calc API -- Auto-gen

Auto-generated interface:

// ServerInterface represents all server handlers.
type ServerInterface interface {

// (GET /calc/diff)
GetCalcDiff(w http.ResponseWriter,

r *http.Request, params GetCalcDiffParams)

// (GET /calc/sum)
GetCalcSum(w http.ResponseWriter,

r *http.Request, params GetCalcSumParams)
}



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Demo: Calc API -- Auto-gen

Auto-generated validation and error messages in action:

$ curl 'localhost:8080/calc/diff?y=12'

parameter "x" in query has an error: \
value is required but missing

$ curl 'localhost:8080/calc/diff?x=10&y=someString'

parameter "y" in query has an error: \
value someString: an invalid integer: invalid syntax



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

OpenAPI Generator Types

I Server types, interfaces, validators, etc.
I Client SDK
I Documentation
I Database schema



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Boilerplate: Even Inline

gtk_widget_set_tooltip_text(
GTK_WIDGET(btn_run),
"Run the command");

gtk_container_add(GTK_CONTAINER(vbox1),
GTK_WIDGET(btn_run));

gtk_widget_show(GTK_WIDGET(btn_run));
gtk_widget_show_all(GTK_WIDGET(vbox1));

I Casting
I Error checks
I Initialization and finalization



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Example: Stringify C Enum Manually

// XXX Manually keep in sync with the array opstr
typedef enum Operation {

OP_SUM,
OP_DIFF,
OP_LARGEST,
OP_SMALLEST,

} Operation;

// XXX Manually keep in sync with the enum
const char * opstr[] = {

"OP_SUM",
"OP_DIFF",
"OP_LARGEST",
"OP_SMALLEST" };



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Example: Stringify C Enum Manually

Problems?

I Chance for inconsistency is highly
I Incorrect debug messages and logs, without anybody realizing
I SEGFAULT if you forget to update opstr after growing the enum



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Example: Stringify C Enum With sed

opstr.gen.h: main.c
(echo '// Do not edit this file!' &&\

echo 'const char * opstr[] = { ' &&\
grep -E '^\s*OP_[A-Z]+,$$' main.c|\

sed -E 's/^\s*(OP_[A-Z]+),$$/ "\1",/' &&\
echo '};') > opstr.gen.h



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

So...

I Consistency -- guaranteed
I Better than handwritten code, if done right:

I Maintainability
I Security

I Productivity -- esp. if somebody else wrote the generator
I Fun, mayhem and fun again -- if you have to write the generator



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The EndIn the Wild



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Tools

I Compiler compilers: lex, yacc, etc.
I Transpilers
I Build system generators: Automake, CMake, qmake, etc.
I GUI builders: Glade, Qt Designer, etc.
I Configuration generators: update-grub
I From the Web world

I CSS: SaSS, LESS, Stylus
I k8s: kompose, kustomize, helm, etc.

I Interface/binding generators: SIP for Python (used for PyQt, wxPython, etc.)
I PyBindGen, SWIG, etc.

I Flexible: Telosys from Eclipse (DB/model to any kind of code based on
templates)

I protoc with gRPC Go plugin

Truth: I’m yet to try some of the above.



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

go generate and stringer

Remember the C enum stringification example?

Examples for go generate and stringer: go.dev/blog/generate

Other uses for go generate
... generating Unicode tables in the unicode package, creating efficient
methods for encoding and decoding arrays in encoding/gob, producing
time zone data in the time package, and so on.

-- Rob Pike

https://go.dev/blog/generate


Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

m4

I A general-purpose macro processor fom 70s
I Not because the first, but because still alive
I History of macro processors:

www.gnu.org/software/m4/manual/html_node/History.html
I m4 was used for Raftor preprocessor, a FORTRAN dialect

https://www.gnu.org/software/m4/manual/html_node/History.html


Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The EndConsiderations



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Cons

I Ugly code - hard to read and debug
I Extreme examples: output generated by lex and bison
I Not even gdb can help
I Ask: why ugly (efficiency?), and is it worth it?

I Less efficient
I Tools have to be general; hard to optimize individual cases

I Bad error reporting (auto-generated lexers and parsers)
I You don’t know what’s happening behind the scenes

I You still don’t know what’s happening behind the scenes when you write
everything manually.

Some major compilers and interpreters use handwritten parsers.



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Pro or Con?

I Declarative
I Makes sure we have some kind of spec for our software
I Same spec ruined to work aroud generator limitations



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Legal

I What is the license of the generated code?
I GCC exception: www.gnu.org/licenses/gcc-exception-3.1.html
I GitHub Copilot controversy

I Because it was trained using codebase under non-public-domain licenses
I Not the kind of code generator we are talking about, BTW.

https://www.gnu.org/licenses/gcc-exception-3.1.html


Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Never for Database

I Not something you want to put it in a pipeline



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Tests Are Important

I What if a you forget to enable the OAPI validation flags or middleware?
I What if a flag changes in a future release of the generator?

That’s why tests and assertions are important.



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Auto-generate Tests?

I Could be a bad idea
I Go does this, but only to invoke our tests, AFAIK
I Auto-generated tests used to detect compiler bugs

I Compare with the outputs of other compiler
I Did I read it in a paper about CompCert (Coq-based C compiler)?

I If doing,
I write a totally independent program
I verify and lock the code manually



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The EndMaking It Better



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Tips

I Make it reproducible, if not too much trouble
I Prefer annotations over edits (will explain soon)
I Patch if needed
I Generated code: push or .gitignore?
I Linters and other static analysis tools
I indent, gofmt, etc.



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

kompose Experience

I What kompose is
I Convert once, forget the source -- okay.
I What if both docker-compose.yml and k8s are needed?

I How to sync? Put in a pipeline.
I What about the edits?



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

kompose Experience

What about the edits?

Maybe kompose annotations will help:

I kompose.image-pull-policy
I kompose.image-pull-secret, etc.
I etc.



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

kompose Experience

When annotations didn’t help...

I k8s services for Docker Compose services
I kompose generates them only if ports are exposed, AFAIK
I Just wrote a custom script

I initContainers
I Directly under services in docker-compose.yml, under

spec.template.spec.initContainers in k8s deployment.yaml
I Used patch files

40a41,45
> "initContainers": [
> {
> "image": "REGISTRY/REPO/myapp",
> "name": "myapp-con"
> } ],



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The Endnguigen



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

What It Is

I A programming language
I A transpiler/code generator
I Self-hosted
I Targets:

I C/GTK: usable
I C++/Qt, Web: at infancy
I Android: worked once, needs restart
I Other: Go, Java, etc.

I Unreleased, but the plan is to go libre
I Similar (or not similar): Vala, Haxel, Nim, etc.



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

ngg for GUI: the Source

Figure 5: Source code of an ngg GUI program



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

ngg for GUI: C/GTK

Figure 6: C/GTK generated code



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

ngg for GUI: C++/Qt

Figure 7: C++/Qt generated code



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

ngg for GUI: Screenshots

Figure 8: GTK and Qt screenshots



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

ngg for GUI: Auto-generated Test

Figure 9: Auto-generated C/GTK test



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

ngg for GUI: Theeram

Figure 10: Theeram C to ngg migration, WIP



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Origins of nguigen (1)

I Early dreams of own OS and programming languages
I Passion for C, but pitfalls and productivity issues



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Origins of nguigen (2)

Figure 11: My Early PyGTK Works



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Origins of nguigen (2)

I Publishing PyGTK apps since 2012 or before
I Thousands of school elections with Sammaty (20k downloads); not that I’m

proud of
I Migration to C
I Parallel Web versions



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Origins of nguigen (2)

I Desktop development frustrations
I Differences in operating systems, desktops, different versions of the same GUI

toolkit
I Low productivity
I How do I solve this without inventing one more framework?



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Origins of nguigen (3)

C days...

What I ought to think about:

I Data structures
I Algorithms
I Programming methodologies and paradigms

What I was forced to think about:

I Overflows, underflows, memory leaks, etc.

What showed up always:

I SEGFAULT



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

nguigen: malloc() error check

ngg
local person new Person;

C output
Person * person = malloc(sizeof(Person));
if(person == NULL) {

perror(NULL);
exit(EXIT_FAILURE);

}
local offers:
Destruction and de-allocation of a local object Destruction and de-allocation of
member object Setting invalid pointers back to NULL



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Syntactic Sugar

Just an example...

ngg
if in targlang .[CXX, GO, JAVA]\Lang

=puts/['Language supports generics.'];;

C output
if( targlang == LANG_CXX ||

targlang == LANG_GO ||
targlang == LANG_JAVA )

{
puts("Language supports generics.");

}



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

nguigen: Simplified Programming

I Compile-time semi-automatic memory management
I Can I go the Rust way?

I No explicit pointers
I Casting to base class made easy in C (think: GTK)
I Restricted for loop
I Ergonomic syntax (less Shift key)
I Currently: class objs always in heap and struct objs always in stack



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

nguigen: Sophisticated Macro Processing

I Imlining -- inline before you get the C code
I Shadow classes -- wrap or customize external method calls
I Verbose lines
I Conditional code generation



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Codegen in the nguigen Ecosystem

I nguigen is created with:
I custom lexer generator
I custom parser generator
I AWK, sed, etc.: mapping-related code from tsv files (e.g.: data types)
I Makefile parts generated with ngg itself and bash

I ngg to GTK, Qt, etc. mapping: interfaces and shadow classes with h2ngg
and PHP



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Data Type Mapping

Figure 12: TSV file that maps ngg types to C, Java, etc. (WIP)



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Data Type Mapping

Figure 13: Type strings generated from the TSV using AWK



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Data Type Mapping

Type constants generated from the TSV using AWK:

typedef enum NggDtypetype {
NGG_DTYPETYPE_UNKNOWN,
NGG_DTYPETYPE_THIS_BAKE,
NGG_DTYPETYPE_SUBTYPE,
NGG_DTYPETYPE_BOOL,
NGG_DTYPETYPE_SCHAR,
NGG_DTYPETYPE_CHAR,
NGG_DTYPETYPE_DOUBLE,
NGG_DTYPETYPE_FLOAT,
NGG_DTYPETYPE_INT,
...



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Done So Far

I Parser generator (ngg + PHP)
I Lexer generator

I gitlab.com/nandedamana/nlexgen
I Self-hosted transpiler
I h2ngg (we will see)
I Syntax highlighting in gedit

https://gitlab.com/nandedamana/nlexgen


Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

h2ngg

Figure 14: h2ngg converting GTK headers



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Test Suit

Figure 15: C/GTK Test Suit Runner written in nguigen (system GTK theme:
cdetheme-solaris)



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The EndThe End



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Write Your Own

I There is no general solution; write your own!
I How?



Code Generation

Nandakumar
Edamana

Intro

Code Generators

Why (With Examples)

In the Wild

Considerations

Making It Better

nguigen

The End

Demo Repo

https://github.com/nandedamana/lazy-becomes-prolific

Currently contains oapi-codegen-demo and some trivial stuff included in this
presentation.

https://github.com/nandedamana/lazy-becomes-prolific

	Intro
	Code Generators
	Why (With Examples)
	In the Wild
	Considerations
	Making It Better
	nguigen
	The End

