
Do We Know Enough About Memory?

Nandakumar Edamana

March 3, 2022

Question
Which piece do you like? Which one the computer would?

Question

Where does the variable n reside? RAM, Hard Disk, or somewhere
else?

i n t main ()
{

i n t n = 1 0 ;
s l e e p (60 * 1 5) ;

return n ;
}

Question

Is this safe?

i n t main ()
{

char passwd [1 6] ;

p r i n t f (” E n t e r th e password : ”) ;
s c a n f (”%s ” , passwd) ;

return 0 ;
}

Why Bother
Reasons

Why bother when we have (i) modern hardware and (ii) high-level
languages?

Performance Memory hierarchy, cache locality, etc.

Economy Buying a PC, renting a server, etc.

Limits Hardware limits, memory leaks, etc.

Security Memory-related vulnerabilities

Integrity Bit flip, bit rot, etc.

Environment E-waste, carbon footprint

(All are equally important)

Why Bother
Reasons

Why bother when we have (i) modern hardware and (ii) high-level
languages?

Performance Memory hierarchy, cache locality, etc.

Economy Buying a PC, renting a server, etc.

Limits Hardware limits, memory leaks, etc.

Security Memory-related vulnerabilities

Integrity Bit flip, bit rot, etc.

Environment E-waste, carbon footprint

(All are equally important)

Why Bother
Reasons

Why bother when we have (i) modern hardware and (ii) high-level
languages?

Performance Memory hierarchy, cache locality, etc.

Economy Buying a PC, renting a server, etc.

Limits Hardware limits, memory leaks, etc.

Security Memory-related vulnerabilities

Integrity Bit flip, bit rot, etc.

Environment E-waste, carbon footprint

(All are equally important)

Why Bother
Reasons

Why bother when we have (i) modern hardware and (ii) high-level
languages?

Performance Memory hierarchy, cache locality, etc.

Economy Buying a PC, renting a server, etc.

Limits Hardware limits, memory leaks, etc.

Security Memory-related vulnerabilities

Integrity Bit flip, bit rot, etc.

Environment E-waste, carbon footprint

(All are equally important)

Why Bother
Reasons

Why bother when we have (i) modern hardware and (ii) high-level
languages?

Performance Memory hierarchy, cache locality, etc.

Economy Buying a PC, renting a server, etc.

Limits Hardware limits, memory leaks, etc.

Security Memory-related vulnerabilities

Integrity Bit flip, bit rot, etc.

Environment E-waste, carbon footprint

(All are equally important)

Why Bother
Reasons

Why bother when we have (i) modern hardware and (ii) high-level
languages?

Performance Memory hierarchy, cache locality, etc.

Economy Buying a PC, renting a server, etc.

Limits Hardware limits, memory leaks, etc.

Security Memory-related vulnerabilities

Integrity Bit flip, bit rot, etc.

Environment E-waste, carbon footprint

(All are equally important)

Why Bother
Reasons

Why bother when we have (i) modern hardware and (ii) high-level
languages?

Performance Memory hierarchy, cache locality, etc.

Economy Buying a PC, renting a server, etc.

Limits Hardware limits, memory leaks, etc.

Security Memory-related vulnerabilities

Integrity Bit flip, bit rot, etc.

Environment E-waste, carbon footprint

(All are equally important)

Why Bother
Do I Have Control?

I How deep can software get?
- compiler flags, attributes, intrinsics, OS API, etc.

I How deep can HLLs like Python get?
- control flow, GC tricks, external libraries, etc.

General
Bit Flip

I 2003 Belgian election cosmic ray bit flip claims 12

I Mismatch exactly by 4096 (single bit flip)

I Electrical interference, malfunction, cosmic rays

I Modern hardware is more vulnerable because they are small
I ECC RAM

I What about other points of failure like CPU?

1https://www.johndcook.com/blog/2019/05/20/cosmic-rays-flipping-bits/
2https://www.businessinsider.in/transportation/tech-companies-have-been-

silently-battling-a-bizarre-phenomenon-called-cosmic-rays-that-would-otherwise-
wreak-havoc-on-our-electronics/articleshow/70046484.cms

General
Bit Flip

I 2003 Belgian election cosmic ray bit flip claims 12

I Mismatch exactly by 4096 (single bit flip)

I Electrical interference, malfunction, cosmic rays

I Modern hardware is more vulnerable because they are small
I ECC RAM

I What about other points of failure like CPU?

1https://www.johndcook.com/blog/2019/05/20/cosmic-rays-flipping-bits/
2https://www.businessinsider.in/transportation/tech-companies-have-been-

silently-battling-a-bizarre-phenomenon-called-cosmic-rays-that-would-otherwise-
wreak-havoc-on-our-electronics/articleshow/70046484.cms

General
Bit Flip

I 2003 Belgian election cosmic ray bit flip claims 12

I Mismatch exactly by 4096 (single bit flip)

I Electrical interference, malfunction, cosmic rays

I Modern hardware is more vulnerable because they are small
I ECC RAM

I What about other points of failure like CPU?

1https://www.johndcook.com/blog/2019/05/20/cosmic-rays-flipping-bits/
2https://www.businessinsider.in/transportation/tech-companies-have-been-

silently-battling-a-bizarre-phenomenon-called-cosmic-rays-that-would-otherwise-
wreak-havoc-on-our-electronics/articleshow/70046484.cms

General
Bit Flip

I 2003 Belgian election cosmic ray bit flip claims 12

I Mismatch exactly by 4096 (single bit flip)

I Electrical interference, malfunction, cosmic rays

I Modern hardware is more vulnerable because they are small
I ECC RAM

I What about other points of failure like CPU?

1https://www.johndcook.com/blog/2019/05/20/cosmic-rays-flipping-bits/
2https://www.businessinsider.in/transportation/tech-companies-have-been-

silently-battling-a-bizarre-phenomenon-called-cosmic-rays-that-would-otherwise-
wreak-havoc-on-our-electronics/articleshow/70046484.cms

General
Bit Flip

I 2003 Belgian election cosmic ray bit flip claims 12

I Mismatch exactly by 4096 (single bit flip)

I Electrical interference, malfunction, cosmic rays

I Modern hardware is more vulnerable because they are small

I ECC RAM
I What about other points of failure like CPU?

1https://www.johndcook.com/blog/2019/05/20/cosmic-rays-flipping-bits/
2https://www.businessinsider.in/transportation/tech-companies-have-been-

silently-battling-a-bizarre-phenomenon-called-cosmic-rays-that-would-otherwise-
wreak-havoc-on-our-electronics/articleshow/70046484.cms

General
Bit Flip

I 2003 Belgian election cosmic ray bit flip claims 12

I Mismatch exactly by 4096 (single bit flip)

I Electrical interference, malfunction, cosmic rays

I Modern hardware is more vulnerable because they are small
I ECC RAM

I What about other points of failure like CPU?

1https://www.johndcook.com/blog/2019/05/20/cosmic-rays-flipping-bits/
2https://www.businessinsider.in/transportation/tech-companies-have-been-

silently-battling-a-bizarre-phenomenon-called-cosmic-rays-that-would-otherwise-
wreak-havoc-on-our-electronics/articleshow/70046484.cms

General
Bit Flip

I 2003 Belgian election cosmic ray bit flip claims 12

I Mismatch exactly by 4096 (single bit flip)

I Electrical interference, malfunction, cosmic rays

I Modern hardware is more vulnerable because they are small
I ECC RAM

I What about other points of failure like CPU?

1https://www.johndcook.com/blog/2019/05/20/cosmic-rays-flipping-bits/
2https://www.businessinsider.in/transportation/tech-companies-have-been-

silently-battling-a-bizarre-phenomenon-called-cosmic-rays-that-would-otherwise-
wreak-havoc-on-our-electronics/articleshow/70046484.cms

General
Bit Rot

I Physical damage

I Obsolescence

What is Computer Memory?
Concepts

I What is a computer?

I Stored program, stored data, and temporary data

I Temporary data includes intermediate results, pointers like SP
and IP, process info, etc.

I CPU cannot store everything

What is Computer Memory?
Primary vs Secondary

I Primary vs Secondary
I Primary

I CPU registers
I CPU cache
I ROM
I RAM

I Random Access vs Sequential Access

I Content-addressable

What is Computer Memory?
Primary vs Secondary

I Primary vs Secondary
I Primary

I CPU registers

I CPU cache
I ROM
I RAM

I Random Access vs Sequential Access

I Content-addressable

What is Computer Memory?
Primary vs Secondary

I Primary vs Secondary
I Primary

I CPU registers
I CPU cache

I ROM
I RAM

I Random Access vs Sequential Access

I Content-addressable

What is Computer Memory?
Primary vs Secondary

I Primary vs Secondary
I Primary

I CPU registers
I CPU cache
I ROM

I RAM

I Random Access vs Sequential Access

I Content-addressable

What is Computer Memory?
Primary vs Secondary

I Primary vs Secondary
I Primary

I CPU registers
I CPU cache
I ROM
I RAM

I Random Access vs Sequential Access

I Content-addressable

General
Units

I KB vs KiB (IEC 3 units)

I How many bits is a byte?

I Nibble

I Word

3International Electrotechnical Commission

General
Units

I KB vs KiB (IEC 3 units)

I How many bits is a byte?

I Nibble

I Word

3International Electrotechnical Commission

General
Units

I KB vs KiB (IEC 3 units)

I How many bits is a byte?

I Nibble

I Word

3International Electrotechnical Commission

General
Units

I KB vs KiB (IEC 3 units)

I How many bits is a byte?

I Nibble

I Word

3International Electrotechnical Commission

General
Units

I KB vs KiB (IEC 3 units)

I How many bits is a byte?

I Nibble

I Word

3International Electrotechnical Commission

n-bit Computing

Can mean:

I Word size is n bits

I Addressing limit is 2n bits

n-bit Computing

Can mean:

I Word size is n bits

I Addressing limit is 2n bits

n-bit Computing

Can mean:

I Word size is n bits

I Addressing limit is 2n bits

General
Browser Are Memory Hogs

I Rich Web sites and apps

I JavaScript memory leaks

I Prefetching

I Electron-based apps

General
Browser Are Memory Hogs

I Rich Web sites and apps

I JavaScript memory leaks

I Prefetching

I Electron-based apps

General
Browser Are Memory Hogs

I Rich Web sites and apps

I JavaScript memory leaks

I Prefetching

I Electron-based apps

General
Browser Are Memory Hogs

I Rich Web sites and apps

I JavaScript memory leaks

I Prefetching

I Electron-based apps

General
Browser Are Memory Hogs

I Rich Web sites and apps

I JavaScript memory leaks

I Prefetching

I Electron-based apps

General
Memory Cleaning Apps

Ugly Malware

Bad Clears useful cache

Good Don’t exist

General
Memory Cleaning Apps

Ugly Malware

Bad Clears useful cache

Good Don’t exist

General
Memory Cleaning Apps

Ugly Malware

Bad Clears useful cache

Good Don’t exist

General
Memory Cleaning Apps

Ugly Malware

Bad Clears useful cache

Good Don’t exist

Memory Leak
Textbook Style

main () {
char * a r r = m a l l o c (1 0 2 4) ;

// Use a r r , but don ’ t f r e e ()

a r r = NULL ; /* or some new a l l o c a t i o n */
}

General
Before We Fork...

Some useful info related to secondary memory before we start
focusing on primary memory:

I How to monitor memory and disk usage?

I SMART 4

I RAID

I SSD

I Filesystems

I Tape storage

I tmpfs

I Hardware details: yes, we skip

4Self-Monitoring, Analysis and Reporting Technology

General
Before We Fork...

Some useful info related to secondary memory before we start
focusing on primary memory:

I How to monitor memory and disk usage?

I SMART 4

I RAID

I SSD

I Filesystems

I Tape storage

I tmpfs

I Hardware details: yes, we skip

4Self-Monitoring, Analysis and Reporting Technology

General
Before We Fork...

Some useful info related to secondary memory before we start
focusing on primary memory:

I How to monitor memory and disk usage?

I SMART 4

I RAID

I SSD

I Filesystems

I Tape storage

I tmpfs

I Hardware details: yes, we skip

4Self-Monitoring, Analysis and Reporting Technology

General
Before We Fork...

Some useful info related to secondary memory before we start
focusing on primary memory:

I How to monitor memory and disk usage?

I SMART 4

I RAID

I SSD

I Filesystems

I Tape storage

I tmpfs

I Hardware details: yes, we skip

4Self-Monitoring, Analysis and Reporting Technology

General
Before We Fork...

Some useful info related to secondary memory before we start
focusing on primary memory:

I How to monitor memory and disk usage?

I SMART 4

I RAID

I SSD

I Filesystems

I Tape storage

I tmpfs

I Hardware details: yes, we skip

4Self-Monitoring, Analysis and Reporting Technology

General
Before We Fork...

Some useful info related to secondary memory before we start
focusing on primary memory:

I How to monitor memory and disk usage?

I SMART 4

I RAID

I SSD

I Filesystems

I Tape storage

I tmpfs

I Hardware details: yes, we skip

4Self-Monitoring, Analysis and Reporting Technology

General
Before We Fork...

Some useful info related to secondary memory before we start
focusing on primary memory:

I How to monitor memory and disk usage?

I SMART 4

I RAID

I SSD

I Filesystems

I Tape storage

I tmpfs

I Hardware details: yes, we skip

4Self-Monitoring, Analysis and Reporting Technology

General
Before We Fork...

Some useful info related to secondary memory before we start
focusing on primary memory:

I How to monitor memory and disk usage?

I SMART 4

I RAID

I SSD

I Filesystems

I Tape storage

I tmpfs

I Hardware details: yes, we skip

4Self-Monitoring, Analysis and Reporting Technology

General
Before We Fork...

Some useful info related to secondary memory before we start
focusing on primary memory:

I How to monitor memory and disk usage?

I SMART 4

I RAID

I SSD

I Filesystems

I Tape storage

I tmpfs

I Hardware details: yes, we skip

4Self-Monitoring, Analysis and Reporting Technology

General
SMART

General
RAID

mdadm −D /dev/md1
/dev/md1 :

. . .
Raid L e v e l : r a i d 1
Array S i z e : 54271424 (51 . 76 GiB 55 .57 GB)

. . .
Update Time : Thu Mar 3 08 : 29 : 06 2022

Sta t e : c l e a n
. . .

Name : nandakumar−l a p t op :md1 (l o c a l to hos t nandakumar−l a p t op)
. . .

Number Major Minor Ra idDev i ce S ta t e
2 8 2 0 a c t i v e sync /dev / sda2
1 8 20 1 a c t i v e sync /dev / sdb4

General
Questions?

Memory Bugs

I Memory leak

I Double free

I Dangling pointer

I Null dereference

I Out-of-bound access

I Stack overflow (mainly due to recursion)

I CPU vulnerabilities like Spectre and Meltdown

Memory Bugs

I Memory leak

I Double free

I Dangling pointer

I Null dereference

I Out-of-bound access

I Stack overflow (mainly due to recursion)

I CPU vulnerabilities like Spectre and Meltdown

Memory Bugs

I Memory leak

I Double free

I Dangling pointer

I Null dereference

I Out-of-bound access

I Stack overflow (mainly due to recursion)

I CPU vulnerabilities like Spectre and Meltdown

Memory Bugs

I Memory leak

I Double free

I Dangling pointer

I Null dereference

I Out-of-bound access

I Stack overflow (mainly due to recursion)

I CPU vulnerabilities like Spectre and Meltdown

Memory Bugs

I Memory leak

I Double free

I Dangling pointer

I Null dereference

I Out-of-bound access

I Stack overflow (mainly due to recursion)

I CPU vulnerabilities like Spectre and Meltdown

Memory Bugs

I Memory leak

I Double free

I Dangling pointer

I Null dereference

I Out-of-bound access

I Stack overflow (mainly due to recursion)

I CPU vulnerabilities like Spectre and Meltdown

Memory Bugs

I Memory leak

I Double free

I Dangling pointer

I Null dereference

I Out-of-bound access

I Stack overflow (mainly due to recursion)

I CPU vulnerabilities like Spectre and Meltdown

Memory Bugs

I Memory leak

I Double free

I Dangling pointer

I Null dereference

I Out-of-bound access

I Stack overflow (mainly due to recursion)

I CPU vulnerabilities like Spectre and Meltdown

Virtual Memory
Before That

I One program at a time

I Unrestricted access to memory

I Absolute addresses

Disclaimer: History is more complicated.

Virtual Memory
Before That

I One program at a time

I Unrestricted access to memory

I Absolute addresses

Disclaimer: History is more complicated.

Virtual Memory
Before That

I One program at a time

I Unrestricted access to memory

I Absolute addresses

Disclaimer: History is more complicated.

Virtual Memory
Before That

I One program at a time

I Unrestricted access to memory

I Absolute addresses

Disclaimer: History is more complicated.

Virtual Memory
Characteristics

I The stage is mine
I Address space

I More than physical
I Non-unique addresses

I Memory protection

I Swap

Disclaimer: Reality is more complicated.

Virtual Memory
Characteristics

I The stage is mine

I Address space
I More than physical
I Non-unique addresses

I Memory protection

I Swap

Disclaimer: Reality is more complicated.

Virtual Memory
Characteristics

I The stage is mine
I Address space

I More than physical
I Non-unique addresses

I Memory protection

I Swap

Disclaimer: Reality is more complicated.

Virtual Memory
Characteristics

I The stage is mine
I Address space

I More than physical

I Non-unique addresses

I Memory protection

I Swap

Disclaimer: Reality is more complicated.

Virtual Memory
Characteristics

I The stage is mine
I Address space

I More than physical
I Non-unique addresses

I Memory protection

I Swap

Disclaimer: Reality is more complicated.

Virtual Memory
Characteristics

I The stage is mine
I Address space

I More than physical
I Non-unique addresses

I Memory protection

I Swap

Disclaimer: Reality is more complicated.

Virtual Memory
Characteristics

I The stage is mine
I Address space

I More than physical
I Non-unique addresses

I Memory protection

I Swap

Disclaimer: Reality is more complicated.

Virtual Memory
Characteristics

I The stage is mine
I Address space

I More than physical
I Non-unique addresses

I Memory protection

I Swap

Disclaimer: Reality is more complicated.

Virtual Memory
Terminology

I Pages

I Frames

I Swapping

I Page table and TLB

I Page fault

I Thrashing

Memory Management

I Manual
I Automatic

I Garbage collection
I Compile-time checks and allocation decisions
I Safety checks (null dereference, out-of bound access, etc.)

Memory Management

I Manual

I Automatic
I Garbage collection
I Compile-time checks and allocation decisions
I Safety checks (null dereference, out-of bound access, etc.)

Memory Management

I Manual
I Automatic

I Garbage collection
I Compile-time checks and allocation decisions
I Safety checks (null dereference, out-of bound access, etc.)

Memory Management

I Manual
I Automatic

I Garbage collection

I Compile-time checks and allocation decisions
I Safety checks (null dereference, out-of bound access, etc.)

Memory Management

I Manual
I Automatic

I Garbage collection
I Compile-time checks and allocation decisions

I Safety checks (null dereference, out-of bound access, etc.)

Memory Management

I Manual
I Automatic

I Garbage collection
I Compile-time checks and allocation decisions
I Safety checks (null dereference, out-of bound access, etc.)

Memory Layout

Args and env
Stack

...
Heap
bss

data
text

Types of Allocation

Static Allocation Initialized global data (.data)

Stack Allocation Compile-time allocation (mostly), runtime growth

Heap Allocation Totally dynamic (runtime)

NOTE: Stack allocation can also have dynamic nature (alloca(),
for instance).

Types of Allocation

Static Allocation Initialized global data (.data)

Stack Allocation Compile-time allocation (mostly), runtime growth

Heap Allocation Totally dynamic (runtime)

NOTE: Stack allocation can also have dynamic nature (alloca(),
for instance).

Types of Allocation

Static Allocation Initialized global data (.data)

Stack Allocation Compile-time allocation (mostly), runtime growth

Heap Allocation Totally dynamic (runtime)

NOTE: Stack allocation can also have dynamic nature (alloca(),
for instance).

Types of Allocation

Static Allocation Initialized global data (.data)

Stack Allocation Compile-time allocation (mostly), runtime growth

Heap Allocation Totally dynamic (runtime)

NOTE: Stack allocation can also have dynamic nature (alloca(),
for instance).

Types of Allocation

Static Allocation Initialized global data (.data)

Stack Allocation Compile-time allocation (mostly), runtime growth

Heap Allocation Totally dynamic (runtime)

NOTE: Stack allocation can also have dynamic nature (alloca(),
for instance).

Types of Allocation
Stack and Heap

#inc l u d e <s t d i o . h>
#inc l u d e <s t d l i b . h>

typede f s t r u c t {
char * name ;
i n t yob ;

} Person ;

vo id d i e i f n u l l (vo id * p t r) {
i f (! p t r) {

p e r r o r (NULL) ;
e x i t (1) ;

}
}

Types of Allocation
Stack and Heap

i n t main ()
{

i n t n ; // s t a c k a l l o c a t i o n

p r i n t f (” Ente r the no . o f p eop l e (>0): ”) ;
s c a n f (”%d” , &n) ; // no new a l l o c a t i o n

Person * peop l e = ma l l o c (n * s i z e o f (Person)) ; // heap a l l o c a t i o n
d i e i f n u l l (p eop l e) ;

f o r (i n t i = 0 ; i < n ; i++) { // s t a c k a l l o c a t i o n
const char * dob ;

p r i n t f (”\nEnter the name o f Person %d : ” , i + 1) ;
s c a n f (”%ms” , &(peop l e [i] . name)) ; // new heap a l l o c a t i o n
d i e i f n u l l (p eop l e [i] . name) ;

p r i n t f (” Ente r the YoB o f Person %d : ” , i + 1) ;
s c a n f (”%d” , &(peop l e [i] . yob)) ; // no new a l l o c a t i o n

}

Types of Allocation
Stack Growth

NOTE: Stack size is fixed and limited throughout the execution.

1. start() → main()

2. main() → a()
a() returns

3. main() → b()

4. b() → c()
c() returns, b() returns, main() returns

() −> m() SP = 0 x 7 f f e d d 2 0 7 a d 0
m() −> a () SP = 0 x 7 f f e d d 2 0 7 a b 0
a () r e t u r n s SP = 0 x 7 f f e d d 2 0 7 a d 0
m() −> b () SP = 0 x 7 f f e d d 2 0 7 a b 0
b () −> c () SP = 0 x 7 f f e d d 2 0 7 a 9 0
c () r e t u r n s SP = 0 x 7 f f e d d 2 0 7 a b 0
b () r e t u r n s SP = 0 x 7 f f e d d 2 0 7 a d 0

Types of Allocation
How Stack Is Allocated

main :
. . .

pushq %rbp
. . .

movq %rsp , %rbp
. . .

subq $32 , %r s p

Types of Allocation
How Stack Is Allocated

I Essentially a couple of simple instructions

I Allocates all variables in a function at once

Types of Allocation
How Stack Is Allocated

I Essentially a couple of simple instructions

I Allocates all variables in a function at once

Types of Allocation
How Stack Is Accessed

i = 0:

movl $0 , −20(%rbp)

I i = 0 means move 0 to i

I i is at rbp - 20

I So move 0 to the location rbp - 20

Types of Allocation
How Stack Is Accessed

i = 0:

movl $0 , −20(%rbp)

I i = 0 means move 0 to i

I i is at rbp - 20

I So move 0 to the location rbp - 20

Types of Allocation
How Stack Is Accessed

i = 0:

movl $0 , −20(%rbp)

I i = 0 means move 0 to i

I i is at rbp - 20

I So move 0 to the location rbp - 20

Types of Allocation
How Stack Is Accessed

i = 0:

movl $0 , −20(%rbp)

I i = 0 means move 0 to i

I i is at rbp - 20

I So move 0 to the location rbp - 20

Types of Allocation
How Heap Is Allocated

c a l l malloc@PLT
movq %rax , −16(%rbp)

I malloc() calls other functions and performs expensive
calculations

I Each object or dynamic array needs its own malloc() call

I Accessed using pointers

Types of Allocation
How Heap Is Allocated

c a l l malloc@PLT
movq %rax , −16(%rbp)

I malloc() calls other functions and performs expensive
calculations

I Each object or dynamic array needs its own malloc() call

I Accessed using pointers

Types of Allocation
How Heap Is Allocated

c a l l malloc@PLT
movq %rax , −16(%rbp)

I malloc() calls other functions and performs expensive
calculations

I Each object or dynamic array needs its own malloc() call

I Accessed using pointers

Types of Allocation
How Heap Is Allocated

c a l l malloc@PLT
movq %rax , −16(%rbp)

I malloc() calls other functions and performs expensive
calculations

I Each object or dynamic array needs its own malloc() call

I Accessed using pointers

Types of Allocation
When to?

I Stack when the size is small and known in advance

I Heap for large, size-unknown, or passed-around objects

NOTE: not all passed-around objects have to be heap-allocated.

Types of Allocation
When to?

I Stack when the size is small and known in advance

I Heap for large, size-unknown, or passed-around objects

NOTE: not all passed-around objects have to be heap-allocated.

Types of Allocation
When to?

I Stack when the size is small and known in advance

I Heap for large, size-unknown, or passed-around objects

NOTE: not all passed-around objects have to be heap-allocated.

Types of Allocation
When to?

I Stack when the size is small and known in advance

I Heap for large, size-unknown, or passed-around objects

NOTE: not all passed-around objects have to be heap-allocated.

Dynamic Memory Pitfalls

I free() is lazy

I malloc() may fail in future

Python Memory Management
Basics

I Private Heap

I Reference-counted Garbage Collection

I Overallocation for dynamic data structures

Python Memory Management
Basics

I Private Heap

I Reference-counted Garbage Collection

I Overallocation for dynamic data structures

Python Memory Management
Basics

I Private Heap

I Reference-counted Garbage Collection

I Overallocation for dynamic data structures

Python Memory Management
Basics

I Private Heap

I Reference-counted Garbage Collection

I Overallocation for dynamic data structures

Python Memory Management
Allocation

Objects are not cloned by default:

>>> c l a s s MyClass :
. . . pass
. . .
>>> o b j 1 = MyClass ()
>>> o b j 2 = MyClass ()
>>> o b j 3 = o b j 1
>>> i d (o b j 1)
140197270756992
>>> i d (o b j 2)
140197270163072
>>> i d (o b j 3)
140197270756992
>>>

Python Memory Management
Allocation

What is the difference between = and + =?

>>> s = ’ H e l l o ’
>>> s = s + ’ , w o r l d ’
>>> s += ’ ! ’
>>> s
’ H e l l o , w o r l d ! ’
>>>

Python Memory Management
Allocation

+ = might perform in-place addition.

>>> s = ’ H e l l o ’
>>> i d (s)
140336922823728
>>> s = s + ’ , w o r l d ’
>>> s
’ H e l l o , w o r l d ’
>>> i d (s)
140336922865776
>>> s += ’ ! ’
>>> s
’ H e l l o , w o r l d ! ’
>>> i d (s)
140336922865776
>>>

Python Memory Management
Allocation

+ = is in-place only if iadd method has been implemented.

Python Memory Management
Allocation

So far, so good:

>>> s = ’ H e l l o ’
>>> i d (s)
140253776977008
>>> s = s + ’ , w o r l d ! ’
>>> s
’ H e l l o , w o r l d ! ’
>>> i d (s)
140253777023088
>>>

Wait, what?

>>> s = ’ H e l l o ’
>>> i d (s)
140253776977008
>>> s += ’ , w o r l d ! ’
>>> s
’ H e l l o , w o r l d ! ’
>>> i d (s)
140253777023088
>>>

Python Memory Management
Allocation

So far, so good:

>>> s = ’ H e l l o ’
>>> i d (s)
140253776977008
>>> s = s + ’ , w o r l d ! ’
>>> s
’ H e l l o , w o r l d ! ’
>>> i d (s)
140253777023088
>>>

Wait, what?

>>> s = ’ H e l l o ’
>>> i d (s)
140253776977008
>>> s += ’ , w o r l d ! ’
>>> s
’ H e l l o , w o r l d ! ’
>>> i d (s)
140253777023088
>>>

Python Memory Management
Allocation

I The second part was run in the same session

I Strings are immutable in Python

I So the implementation may choose to pool them

Python Memory Management
Allocation

I The second part was run in the same session

I Strings are immutable in Python

I So the implementation may choose to pool them

Python Memory Management
Allocation

I The second part was run in the same session

I Strings are immutable in Python

I So the implementation may choose to pool them

Python Memory Management
Concatenation

From https://docs.python.org/3.8/library/stdtypes.html:

https://docs.python.org/3.8/library/stdtypes.html

Python Memory Management
Strings Are Mutable?

How come + = is possible if strings are immutable in Python?

CPython + = reuses the object only if the reference count is 1.

Python Memory Management
Strings Are Mutable?

How come + = is possible if strings are immutable in Python?

CPython + = reuses the object only if the reference count is 1.

Go Memory Management
Stack vs Heap

I There is stack and heap in practice

I They are low-level unlike Python, but the selection happens
automatically

Go Memory Management
Stack vs Heap

I There is stack and heap in practice

I They are low-level unlike Python, but the selection happens
automatically

Go Memory Management
Stack vs Heap

I There is stack and heap in practice

I They are low-level unlike Python, but the selection happens
automatically

Go Memory Management
Stack vs Heap

Important points from https://go.dev/doc/faq#stack or heap:

I Whether on stack or heap doesn’t affect correctness. ”Each
variable in Go exists as long as there are references to it.”5

I The storage location does have an effect on writing efficient
programs.

I Allocated on heap:
I if the compiler cannot prove that the variable is not referenced

after the function returns OR
I if a local variable is very large

I ”In the current compilers, if a variable has its address taken,
that variable is a candidate for allocation on the heap.
However, a basic escape analysis recognizes some cases when
such variables will not live past the return from the function
and can reside on the stack.”

5This differs from C

Go Memory Management
Stack vs Heap

Important points from https://go.dev/doc/faq#stack or heap:

I Whether on stack or heap doesn’t affect correctness. ”Each
variable in Go exists as long as there are references to it.”5

I The storage location does have an effect on writing efficient
programs.

I Allocated on heap:
I if the compiler cannot prove that the variable is not referenced

after the function returns OR
I if a local variable is very large

I ”In the current compilers, if a variable has its address taken,
that variable is a candidate for allocation on the heap.
However, a basic escape analysis recognizes some cases when
such variables will not live past the return from the function
and can reside on the stack.”

5This differs from C

Go Memory Management
Stack vs Heap

Important points from https://go.dev/doc/faq#stack or heap:

I Whether on stack or heap doesn’t affect correctness. ”Each
variable in Go exists as long as there are references to it.”5

I The storage location does have an effect on writing efficient
programs.

I Allocated on heap:
I if the compiler cannot prove that the variable is not referenced

after the function returns OR
I if a local variable is very large

I ”In the current compilers, if a variable has its address taken,
that variable is a candidate for allocation on the heap.
However, a basic escape analysis recognizes some cases when
such variables will not live past the return from the function
and can reside on the stack.”

5This differs from C

Go Memory Management
Stack vs Heap

Important points from https://go.dev/doc/faq#stack or heap:

I Whether on stack or heap doesn’t affect correctness. ”Each
variable in Go exists as long as there are references to it.”5

I The storage location does have an effect on writing efficient
programs.

I Allocated on heap:

I if the compiler cannot prove that the variable is not referenced
after the function returns OR

I if a local variable is very large

I ”In the current compilers, if a variable has its address taken,
that variable is a candidate for allocation on the heap.
However, a basic escape analysis recognizes some cases when
such variables will not live past the return from the function
and can reside on the stack.”

5This differs from C

Go Memory Management
Stack vs Heap

Important points from https://go.dev/doc/faq#stack or heap:

I Whether on stack or heap doesn’t affect correctness. ”Each
variable in Go exists as long as there are references to it.”5

I The storage location does have an effect on writing efficient
programs.

I Allocated on heap:
I if the compiler cannot prove that the variable is not referenced

after the function returns OR

I if a local variable is very large

I ”In the current compilers, if a variable has its address taken,
that variable is a candidate for allocation on the heap.
However, a basic escape analysis recognizes some cases when
such variables will not live past the return from the function
and can reside on the stack.”

5This differs from C

Go Memory Management
Stack vs Heap

Important points from https://go.dev/doc/faq#stack or heap:

I Whether on stack or heap doesn’t affect correctness. ”Each
variable in Go exists as long as there are references to it.”5

I The storage location does have an effect on writing efficient
programs.

I Allocated on heap:
I if the compiler cannot prove that the variable is not referenced

after the function returns OR
I if a local variable is very large

I ”In the current compilers, if a variable has its address taken,
that variable is a candidate for allocation on the heap.
However, a basic escape analysis recognizes some cases when
such variables will not live past the return from the function
and can reside on the stack.”

5This differs from C

Go Memory Management
Stack vs Heap

Important points from https://go.dev/doc/faq#stack or heap:

I Whether on stack or heap doesn’t affect correctness. ”Each
variable in Go exists as long as there are references to it.”5

I The storage location does have an effect on writing efficient
programs.

I Allocated on heap:
I if the compiler cannot prove that the variable is not referenced

after the function returns OR
I if a local variable is very large

I ”In the current compilers, if a variable has its address taken,
that variable is a candidate for allocation on the heap.
However, a basic escape analysis recognizes some cases when
such variables will not live past the return from the function
and can reside on the stack.”

5This differs from C

Go Memory Management
new() vs make()

new():

I Allocates

I Zeros-out

I Returns the pointer

make() acts like a constructor for certain composite types, and
returns the object itself.

Go Memory Management
new() vs make()

new():

I Allocates

I Zeros-out

I Returns the pointer

make() acts like a constructor for certain composite types, and
returns the object itself.

Go Memory Management
new() vs make()

new():

I Allocates

I Zeros-out

I Returns the pointer

make() acts like a constructor for certain composite types, and
returns the object itself.

Go Memory Management
new() vs make()

new():

I Allocates

I Zeros-out

I Returns the pointer

make() acts like a constructor for certain composite types, and
returns the object itself.

Go Memory Management
new() vs make()

new():

I Allocates

I Zeros-out

I Returns the pointer

make() acts like a constructor for certain composite types, and
returns the object itself.

Go Memory Management
new() vs make()

new():

I Allocates

I Zeros-out

I Returns the pointer

make() acts like a constructor for certain composite types, and
returns the object itself.

Go Memory Management
Use of Virtual Memory

From https://go.dev/doc/faq:

Why does my Go process use so much virtual memory?
The Go memory allocator reserves a large region of virtual
memory as an arena for allocations. This virtual memory
is local to the specific Go process; the reservation does not
deprive other processes of memory.
To find the amount of actual memory allocated to a Go
process, use the Unix top command and consult the RES
(Linux) or RSIZE (macOS) columns.

https://go.dev/doc/faq#Why_does_my_Go_process_use_so_much_virtual_memory

Go Memory Management
Use of Virtual Memory

https://go.dev/doc/faq#goroutines (talks about resizable stacks)

Go Memory Management
Use of Virtual Memory

https://go.dev/doc/codewalk/sharemem/

Go Memory Model
Serialization

Important points from https://go.dev/ref/mem:

I ”The Go memory model specifies the conditions under which
reads of a variable in one goroutine can be guaranteed to
observe values produced by writes to the same variable in a
different goroutine.”

I To serialize shared access, use channels or sync primitives
(e.g.: the ones from the sync package)

Go Memory Model
Serialization

Important points from https://go.dev/ref/mem:

I ”The Go memory model specifies the conditions under which
reads of a variable in one goroutine can be guaranteed to
observe values produced by writes to the same variable in a
different goroutine.”

I To serialize shared access, use channels or sync primitives
(e.g.: the ones from the sync package)

Go Memory Model
Serialization

Important points from https://go.dev/ref/mem:

I ”The Go memory model specifies the conditions under which
reads of a variable in one goroutine can be guaranteed to
observe values produced by writes to the same variable in a
different goroutine.”

I To serialize shared access, use channels or sync primitives
(e.g.: the ones from the sync package)

Go Memory Model
Pitfall

“Incorrect synchronization” from https://go.dev/ref/mem:

Note that a read r may observe the value written by a write
w that happens concurrently with r. Even if this occurs,
it does not imply that reads happening after r will observe
writes that happened before w.

Go Memory Model
Pitfall

var a , b i n t

func f () {
a = 1
b = 2

}

func g () {
p r i n t (b)
p r i n t (a)

}

func main () {
go f ()
g ()

}

We expect g to print 2 and 1 or 0 and 0.
But g may print 2 and then 0, not 2 and 1 or 0 and 0.

Go Memory Model
Pitfall

var a , b i n t

func f () {
a = 1
b = 2

}

func g () {
p r i n t (b)
p r i n t (a)

}

func main () {
go f ()
g ()

}

We expect g to print 2 and 1 or 0 and 0.

But g may print 2 and then 0, not 2 and 1 or 0 and 0.

Go Memory Model
Pitfall

var a , b i n t

func f () {
a = 1
b = 2

}

func g () {
p r i n t (b)
p r i n t (a)

}

func main () {
go f ()
g ()

}

We expect g to print 2 and 1 or 0 and 0.
But g may print 2 and then 0, not 2 and 1 or 0 and 0.

Memory Leak in GC Languages

I Global/resident objects

I Memory leak in libraries

I Not calling finalizers required by external libraries

I Circular reference

Memory Leak in GC Languages

I Global/resident objects

I Memory leak in libraries

I Not calling finalizers required by external libraries

I Circular reference

Memory Leak in GC Languages

I Global/resident objects

I Memory leak in libraries

I Not calling finalizers required by external libraries

I Circular reference

Memory Leak in GC Languages

I Global/resident objects

I Memory leak in libraries

I Not calling finalizers required by external libraries

I Circular reference

Memory Leak in GC Languages

I Global/resident objects

I Memory leak in libraries

I Not calling finalizers required by external libraries

I Circular reference

Memory Leak in GC Languages
JavaScript

I Important for SPAs and PWAs
I From https://auth0.com/blog/four-types-of-leaks-in-your-

javascript-code-and-how-to-get-rid-of-them/:

I Global variables
I Forgotten timers or callbacks
I Out of DOM references
I Closures

https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them/
https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them/

Memory Leak in GC Languages
JavaScript

I Important for SPAs and PWAs

I From https://auth0.com/blog/four-types-of-leaks-in-your-
javascript-code-and-how-to-get-rid-of-them/:

I Global variables
I Forgotten timers or callbacks
I Out of DOM references
I Closures

https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them/
https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them/

Memory Leak in GC Languages
JavaScript

I Important for SPAs and PWAs
I From https://auth0.com/blog/four-types-of-leaks-in-your-

javascript-code-and-how-to-get-rid-of-them/:

I Global variables
I Forgotten timers or callbacks
I Out of DOM references
I Closures

https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them/
https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them/

Memory Leak in GC Languages
JavaScript

I Important for SPAs and PWAs
I From https://auth0.com/blog/four-types-of-leaks-in-your-

javascript-code-and-how-to-get-rid-of-them/:

I Global variables

I Forgotten timers or callbacks
I Out of DOM references
I Closures

https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them/
https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them/

Memory Leak in GC Languages
JavaScript

I Important for SPAs and PWAs
I From https://auth0.com/blog/four-types-of-leaks-in-your-

javascript-code-and-how-to-get-rid-of-them/:

I Global variables
I Forgotten timers or callbacks

I Out of DOM references
I Closures

https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them/
https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them/

Memory Leak in GC Languages
JavaScript

I Important for SPAs and PWAs
I From https://auth0.com/blog/four-types-of-leaks-in-your-

javascript-code-and-how-to-get-rid-of-them/:

I Global variables
I Forgotten timers or callbacks
I Out of DOM references

I Closures

https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them/
https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them/

Memory Leak in GC Languages
JavaScript

I Important for SPAs and PWAs
I From https://auth0.com/blog/four-types-of-leaks-in-your-

javascript-code-and-how-to-get-rid-of-them/:

I Global variables
I Forgotten timers or callbacks
I Out of DOM references
I Closures

https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them/
https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them/

CPU Cache
Rationale

I Temporal Locality

I Spatial Locality

CPU Cache
Leverage

I Access arrays in sequential order

I Pack structures

I Minimize data movement

I Avoid accessing the same cache block from different threads -
(to avoid cache coherence overhead)

I Avoid optimizations that cause cache misses (e.g.: loop
unrolling, maybe)

CPU Cache
Leverage

I Access arrays in sequential order

I Pack structures

I Minimize data movement

I Avoid accessing the same cache block from different threads -
(to avoid cache coherence overhead)

I Avoid optimizations that cause cache misses (e.g.: loop
unrolling, maybe)

CPU Cache
Leverage

I Access arrays in sequential order

I Pack structures

I Minimize data movement

I Avoid accessing the same cache block from different threads -
(to avoid cache coherence overhead)

I Avoid optimizations that cause cache misses (e.g.: loop
unrolling, maybe)

CPU Cache
Leverage

I Access arrays in sequential order

I Pack structures

I Minimize data movement

I Avoid accessing the same cache block from different threads -
(to avoid cache coherence overhead)

I Avoid optimizations that cause cache misses (e.g.: loop
unrolling, maybe)

CPU Cache
Leverage

I Access arrays in sequential order

I Pack structures

I Minimize data movement

I Avoid accessing the same cache block from different threads -
(to avoid cache coherence overhead)

I Avoid optimizations that cause cache misses (e.g.: loop
unrolling, maybe)

CPU Cache
Leverage

I Access arrays in sequential order

I Pack structures

I Minimize data movement

I Avoid accessing the same cache block from different threads -
(to avoid cache coherence overhead)

I Avoid optimizations that cause cache misses (e.g.: loop
unrolling, maybe)

Questions?

Thank You

