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Question
Which piece do you like? Which one the computer would?



Question

Where does the variable n reside? RAM, Hard Disk, or somewhere
else?

i n t main ( )
{

i n t n = 1 0 ;
s l e e p (60 * 1 5 ) ;

return n ;
}



Question

Is this safe?

i n t main ( )
{

char passwd [ 1 6 ] ;

p r i n t f ( ” E n t e r th e password : ” ) ;
s c a n f ( ”%s ” , passwd ) ;

return 0 ;
}



Why Bother
Reasons

Why bother when we have (i) modern hardware and (ii) high-level
languages?

Performance Memory hierarchy, cache locality, etc.

Economy Buying a PC, renting a server, etc.

Limits Hardware limits, memory leaks, etc.

Security Memory-related vulnerabilities

Integrity Bit flip, bit rot, etc.

Environment E-waste, carbon footprint

(All are equally important)
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Why Bother
Do I Have Control?

I How deep can software get?
- compiler flags, attributes, intrinsics, OS API, etc.

I How deep can HLLs like Python get?
- control flow, GC tricks, external libraries, etc.



General
Bit Flip

I 2003 Belgian election cosmic ray bit flip claims 12

I Mismatch exactly by 4096 (single bit flip)

I Electrical interference, malfunction, cosmic rays

I Modern hardware is more vulnerable because they are small
I ECC RAM

I What about other points of failure like CPU?

1https://www.johndcook.com/blog/2019/05/20/cosmic-rays-flipping-bits/
2https://www.businessinsider.in/transportation/tech-companies-have-been-

silently-battling-a-bizarre-phenomenon-called-cosmic-rays-that-would-otherwise-
wreak-havoc-on-our-electronics/articleshow/70046484.cms
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General
Bit Rot

I Physical damage

I Obsolescence



What is Computer Memory?
Concepts

I What is a computer?

I Stored program, stored data, and temporary data

I Temporary data includes intermediate results, pointers like SP
and IP, process info, etc.

I CPU cannot store everything
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I Primary

I CPU registers
I CPU cache
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I Content-addressable
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Memory Leak
Textbook Style

main ( ) {
char * a r r = m a l l o c ( 1 0 2 4 ) ;

// Use a r r , but don ’ t f r e e ( )

a r r = NULL ; /* or some new a l l o c a t i o n */
}



General
Before We Fork...

Some useful info related to secondary memory before we start
focusing on primary memory:

I How to monitor memory and disk usage?

I SMART 4

I RAID

I SSD

I Filesystems

I Tape storage

I tmpfs

I Hardware details: yes, we skip

4Self-Monitoring, Analysis and Reporting Technology
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General
SMART



General
RAID

# mdadm −D /dev/md1
/dev/md1 :

. . .
Raid L e v e l : r a i d 1
Array S i z e : 54271424 (51 . 76 GiB 55 .57 GB)

. . .
Update Time : Thu Mar 3 08 : 29 : 06 2022

Sta t e : c l e a n
. . .

Name : nandakumar−l a p t op :md1 ( l o c a l to hos t nandakumar−l a p t op )
. . .

Number Major Minor Ra idDev i ce S ta t e
2 8 2 0 a c t i v e sync /dev / sda2
1 8 20 1 a c t i v e sync /dev / sdb4



General
Questions?



Memory Bugs

I Memory leak

I Double free

I Dangling pointer

I Null dereference

I Out-of-bound access

I Stack overflow (mainly due to recursion)

I CPU vulnerabilities like Spectre and Meltdown
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Virtual Memory
Terminology

I Pages

I Frames

I Swapping

I Page table and TLB

I Page fault

I Thrashing
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I Manual
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I Garbage collection
I Compile-time checks and allocation decisions
I Safety checks (null dereference, out-of bound access, etc.)
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Memory Layout

Args and env
Stack

...
Heap
bss

data
text



Types of Allocation

Static Allocation Initialized global data (.data)

Stack Allocation Compile-time allocation (mostly), runtime growth

Heap Allocation Totally dynamic (runtime)

NOTE: Stack allocation can also have dynamic nature (alloca(),
for instance).
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Types of Allocation
Stack and Heap

#inc l u d e <s t d i o . h>
#inc l u d e <s t d l i b . h>

typede f s t r u c t {
char * name ;
i n t yob ;

} Person ;

vo id d i e i f n u l l ( vo id * p t r ) {
i f ( ! p t r ) {

p e r r o r (NULL ) ;
e x i t ( 1 ) ;

}
}



Types of Allocation
Stack and Heap

i n t main ( )
{

i n t n ; // s t a c k a l l o c a t i o n

p r i n t f ( ” Ente r the no . o f p eop l e (>0): ” ) ;
s c a n f ( ”%d” , &n ) ; // no new a l l o c a t i o n

Person * peop l e = ma l l o c ( n * s i z e o f ( Person ) ) ; // heap a l l o c a t i o n
d i e i f n u l l ( p eop l e ) ;

f o r ( i n t i = 0 ; i < n ; i++) { // s t a c k a l l o c a t i o n
const char * dob ;

p r i n t f ( ”\nEnter the name o f Person %d : ” , i + 1 ) ;
s c a n f ( ”%ms” , &( peop l e [ i ] . name ) ) ; // new heap a l l o c a t i o n
d i e i f n u l l ( p eop l e [ i ] . name ) ;

p r i n t f ( ” Ente r the YoB o f Person %d : ” , i + 1 ) ;
s c a n f ( ”%d” , &( peop l e [ i ] . yob ) ) ; // no new a l l o c a t i o n

}



Types of Allocation
Stack Growth

NOTE: Stack size is fixed and limited throughout the execution.

1. start() → main()

2. main() → a()
a() returns

3. main() → b()

4. b() → c()
c() returns, b() returns, main() returns

( ) −> m( ) SP = 0 x 7 f f e d d 2 0 7 a d 0
m( ) −> a ( ) SP = 0 x 7 f f e d d 2 0 7 a b 0
a ( ) r e t u r n s SP = 0 x 7 f f e d d 2 0 7 a d 0
m( ) −> b ( ) SP = 0 x 7 f f e d d 2 0 7 a b 0
b ( ) −> c ( ) SP = 0 x 7 f f e d d 2 0 7 a 9 0
c ( ) r e t u r n s SP = 0 x 7 f f e d d 2 0 7 a b 0
b ( ) r e t u r n s SP = 0 x 7 f f e d d 2 0 7 a d 0



Types of Allocation
How Stack Is Allocated

main :
. . .

pushq %rbp
. . .

movq %rsp , %rbp
. . .

subq $32 , %r s p



Types of Allocation
How Stack Is Allocated

I Essentially a couple of simple instructions

I Allocates all variables in a function at once
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Types of Allocation
How Stack Is Accessed

i = 0:

movl $0 , −20(%rbp )

I i = 0 means move 0 to i

I i is at rbp - 20

I So move 0 to the location rbp - 20
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movq %rax , −16(%rbp )

I malloc() calls other functions and performs expensive
calculations

I Each object or dynamic array needs its own malloc() call

I Accessed using pointers
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When to?

I Stack when the size is small and known in advance

I Heap for large, size-unknown, or passed-around objects

NOTE: not all passed-around objects have to be heap-allocated.
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Dynamic Memory Pitfalls

I free() is lazy

I malloc() may fail in future
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I Reference-counted Garbage Collection
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Python Memory Management
Allocation

Objects are not cloned by default:

>>> c l a s s MyClass :
. . . pass
. . .
>>> o b j 1 = MyClass ( )
>>> o b j 2 = MyClass ( )
>>> o b j 3 = o b j 1
>>> i d ( o b j 1 )
140197270756992
>>> i d ( o b j 2 )
140197270163072
>>> i d ( o b j 3 )
140197270756992
>>>



Python Memory Management
Allocation

What is the difference between = and + =?

>>> s = ’ H e l l o ’
>>> s = s + ’ , w o r l d ’
>>> s += ’ ! ’
>>> s
’ H e l l o , w o r l d ! ’
>>>



Python Memory Management
Allocation

+ = might perform in-place addition.

>>> s = ’ H e l l o ’
>>> i d ( s )
140336922823728
>>> s = s + ’ , w o r l d ’
>>> s
’ H e l l o , w o r l d ’
>>> i d ( s )
140336922865776
>>> s += ’ ! ’
>>> s
’ H e l l o , w o r l d ! ’
>>> i d ( s )
140336922865776
>>>



Python Memory Management
Allocation

+ = is in-place only if iadd method has been implemented.



Python Memory Management
Allocation

So far, so good:

>>> s = ’ H e l l o ’
>>> i d ( s )
140253776977008
>>> s = s + ’ , w o r l d ! ’
>>> s
’ H e l l o , w o r l d ! ’
>>> i d ( s )
140253777023088
>>>

Wait, what?

>>> s = ’ H e l l o ’
>>> i d ( s )
140253776977008
>>> s += ’ , w o r l d ! ’
>>> s
’ H e l l o , w o r l d ! ’
>>> i d ( s )
140253777023088
>>>
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Python Memory Management
Concatenation

From https://docs.python.org/3.8/library/stdtypes.html:

https://docs.python.org/3.8/library/stdtypes.html


Python Memory Management
Strings Are Mutable?

How come + = is possible if strings are immutable in Python?

CPython + = reuses the object only if the reference count is 1.
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Go Memory Management
Stack vs Heap

Important points from https://go.dev/doc/faq#stack or heap:

I Whether on stack or heap doesn’t affect correctness. ”Each
variable in Go exists as long as there are references to it.”5

I The storage location does have an effect on writing efficient
programs.

I Allocated on heap:
I if the compiler cannot prove that the variable is not referenced

after the function returns OR
I if a local variable is very large

I ”In the current compilers, if a variable has its address taken,
that variable is a candidate for allocation on the heap.
However, a basic escape analysis recognizes some cases when
such variables will not live past the return from the function
and can reside on the stack.”

5This differs from C
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I Zeros-out

I Returns the pointer

make() acts like a constructor for certain composite types, and
returns the object itself.
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Go Memory Management
Use of Virtual Memory

From https://go.dev/doc/faq:

Why does my Go process use so much virtual memory?
The Go memory allocator reserves a large region of virtual
memory as an arena for allocations. This virtual memory
is local to the specific Go process; the reservation does not
deprive other processes of memory.
To find the amount of actual memory allocated to a Go
process, use the Unix top command and consult the RES
(Linux) or RSIZE (macOS) columns.

https://go.dev/doc/faq#Why_does_my_Go_process_use_so_much_virtual_memory


Go Memory Management
Use of Virtual Memory

https://go.dev/doc/faq#goroutines (talks about resizable stacks)



Go Memory Management
Use of Virtual Memory

https://go.dev/doc/codewalk/sharemem/



Go Memory Model
Serialization

Important points from https://go.dev/ref/mem:

I ”The Go memory model specifies the conditions under which
reads of a variable in one goroutine can be guaranteed to
observe values produced by writes to the same variable in a
different goroutine.”

I To serialize shared access, use channels or sync primitives
(e.g.: the ones from the sync package)
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Serialization

Important points from https://go.dev/ref/mem:

I ”The Go memory model specifies the conditions under which
reads of a variable in one goroutine can be guaranteed to
observe values produced by writes to the same variable in a
different goroutine.”

I To serialize shared access, use channels or sync primitives
(e.g.: the ones from the sync package)



Go Memory Model
Pitfall

“Incorrect synchronization” from https://go.dev/ref/mem:

Note that a read r may observe the value written by a write
w that happens concurrently with r. Even if this occurs,
it does not imply that reads happening after r will observe
writes that happened before w.



Go Memory Model
Pitfall

var a , b i n t

func f ( ) {
a = 1
b = 2

}

func g ( ) {
p r i n t ( b )
p r i n t ( a )

}

func main ( ) {
go f ( )
g ( )

}

We expect g to print 2 and 1 or 0 and 0.
But g may print 2 and then 0, not 2 and 1 or 0 and 0.
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I Memory leak in libraries

I Not calling finalizers required by external libraries

I Circular reference
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Memory Leak in GC Languages
JavaScript

I Important for SPAs and PWAs
I From https://auth0.com/blog/four-types-of-leaks-in-your-

javascript-code-and-how-to-get-rid-of-them/:

I Global variables
I Forgotten timers or callbacks
I Out of DOM references
I Closures

https://auth0.com/blog/four-types-of-leaks-in-your-javascript-code-and-how-to-get-rid-of-them/
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CPU Cache
Rationale

I Temporal Locality

I Spatial Locality



CPU Cache
Leverage

I Access arrays in sequential order

I Pack structures

I Minimize data movement

I Avoid accessing the same cache block from different threads -
(to avoid cache coherence overhead)

I Avoid optimizations that cause cache misses (e.g.: loop
unrolling, maybe)
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Questions?



Thank You


