
The Minefield Beyond Algorithms

Nandakumar Edamana

2025-02-05

What’s Wrong With This Picture?

What’s Wrong With This Picture?

We’ll come back to it later.

What’s Wrong With This Code? (1)

Let’s start with something very simple:

double x, y;
scanf ("% lf %lf", &x, &y);
printf ("x / y = %f\n", x / y);

What’s Wrong With This Code? (1)

Nothing, at least from a crash-perspective.

Believe me, y = 0 won’t result in a crash.

But you clearly remember it crashing the other day, right?
What’s different this time?

What’s Wrong With This Code? (1)

Nothing, at least from a crash-perspective.

Believe me, y = 0 won’t result in a crash.

But you clearly remember it crashing the other day, right?
What’s different this time?

What’s Wrong With This Code? (1)

Nothing, at least from a crash-perspective.

Believe me, y = 0 won’t result in a crash.

But you clearly remember it crashing the other day, right?
What’s different this time?

What’s Wrong With This Code? (2)

include <stdio.h>

int main ()
{

char *buf = malloc (1024);
...

What’s Wrong With This Code? (2)

Pointer truncation. Here’s the fix:

include <stdio.h>
include <stdlib .h>

int main ()
{

char *buf = malloc (1024);
...

Can happen even after including stdlib.h, if you pass the pointer
to an undeclared custom function.

What’s Wrong With This Code? (2)

Pointer truncation. Here’s the fix:

include <stdio.h>
include <stdlib .h>

int main ()
{

char *buf = malloc (1024);
...

Can happen even after including stdlib.h, if you pass the pointer
to an undeclared custom function.

What’s Wrong With This Code? (2)

The truncated value can be:
1 An invalid pointer

2 Same as the original pointer (MSB = 0x0000)
3 Different, pointing to a location owned by the process

What’s Wrong With This Code? (2)

The truncated value can be:
1 An invalid pointer
2 Same as the original pointer (MSB = 0x0000)

3 Different, pointing to a location owned by the process

What’s Wrong With This Code? (2)

The truncated value can be:
1 An invalid pointer
2 Same as the original pointer (MSB = 0x0000)
3 Different, pointing to a location owned by the process

What’s Wrong With This Code? (3)

Now what?

include <stdio.h>
include <stdlib .h>

int main ()
{

char *buf = malloc (1024);
buf [0] = 0;
...

What’s Wrong With This Code? (3)

Didn’t check the return value of malloc(). Duh.

What’s Wrong With This Code? (4)

So this program is perfectly safe?

include <stdio.h>
include <stdlib .h>

const size_t GB = 1024 * 1024 * 1024;

int main ()
{

char *buf = malloc (8 * GB);
if(buf == NULL) { /* Say error and exit */ }

/* Use buf */
...

What’s Wrong With This Code? (4)

malloc() can fail in future.

The Inevitable Doom

Scenario:

You have 10 GB memory (RAM + swap)

You have 6 GB memory free (RAM + swap)
You didn’t check how much is free; you just asked for 8 GB
But malloc() returned a valid pointer
You used nearly 6 GB; so far so good.
You started using the remaining, and after a while. . .
Crash.

You were being a good citizen. Why did the OS betray you?

The Inevitable Doom

Scenario:

You have 10 GB memory (RAM + swap)
You have 6 GB memory free (RAM + swap)

You didn’t check how much is free; you just asked for 8 GB
But malloc() returned a valid pointer
You used nearly 6 GB; so far so good.
You started using the remaining, and after a while. . .
Crash.

You were being a good citizen. Why did the OS betray you?

The Inevitable Doom

Scenario:

You have 10 GB memory (RAM + swap)
You have 6 GB memory free (RAM + swap)
You didn’t check how much is free; you just asked for 8 GB

But malloc() returned a valid pointer
You used nearly 6 GB; so far so good.
You started using the remaining, and after a while. . .
Crash.

You were being a good citizen. Why did the OS betray you?

The Inevitable Doom

Scenario:

You have 10 GB memory (RAM + swap)
You have 6 GB memory free (RAM + swap)
You didn’t check how much is free; you just asked for 8 GB
But malloc() returned a valid pointer

You used nearly 6 GB; so far so good.
You started using the remaining, and after a while. . .
Crash.

You were being a good citizen. Why did the OS betray you?

The Inevitable Doom

Scenario:

You have 10 GB memory (RAM + swap)
You have 6 GB memory free (RAM + swap)
You didn’t check how much is free; you just asked for 8 GB
But malloc() returned a valid pointer
You used nearly 6 GB; so far so good.

You started using the remaining, and after a while. . .
Crash.

You were being a good citizen. Why did the OS betray you?

The Inevitable Doom

Scenario:

You have 10 GB memory (RAM + swap)
You have 6 GB memory free (RAM + swap)
You didn’t check how much is free; you just asked for 8 GB
But malloc() returned a valid pointer
You used nearly 6 GB; so far so good.
You started using the remaining, and after a while. . .

Crash.

You were being a good citizen. Why did the OS betray you?

The Inevitable Doom

Scenario:

You have 10 GB memory (RAM + swap)
You have 6 GB memory free (RAM + swap)
You didn’t check how much is free; you just asked for 8 GB
But malloc() returned a valid pointer
You used nearly 6 GB; so far so good.
You started using the remaining, and after a while. . .
Crash.

You were being a good citizen. Why did the OS betray you?

The Inevitable Doom

Scenario:

You have 10 GB memory (RAM + swap)
You have 6 GB memory free (RAM + swap)
You didn’t check how much is free; you just asked for 8 GB
But malloc() returned a valid pointer
You used nearly 6 GB; so far so good.
You started using the remaining, and after a while. . .
Crash.

You were being a good citizen. Why did the OS betray you?

Memory Overcommit

The Linux kernel overcommit handling modes:

0 - Heuristic overcommit. Ensures a seriously wild allocation
fails while allowing overcommit to reduce swap usage.

1 - Always overcommit. Appropriate for some scientific
applications. Classic example is code using sparse arrays.

2 - Don’t overcommit. For applications that want to guarantee
their memory allocations will be available in the future without
having to initialize every page.

See the doc for more details.

https://www.kernel.org/doc/Documentation/vm/overcommit-accounting

Memory Overcommit

The Linux kernel overcommit handling modes:

0 - Heuristic overcommit. Ensures a seriously wild allocation
fails while allowing overcommit to reduce swap usage.

1 - Always overcommit. Appropriate for some scientific
applications. Classic example is code using sparse arrays.

2 - Don’t overcommit. For applications that want to guarantee
their memory allocations will be available in the future without
having to initialize every page.

See the doc for more details.

https://www.kernel.org/doc/Documentation/vm/overcommit-accounting

Memory Overcommit

The Linux kernel overcommit handling modes:

0 - Heuristic overcommit. Ensures a seriously wild allocation
fails while allowing overcommit to reduce swap usage.

1 - Always overcommit. Appropriate for some scientific
applications. Classic example is code using sparse arrays.

2 - Don’t overcommit. For applications that want to guarantee
their memory allocations will be available in the future without
having to initialize every page.

See the doc for more details.

https://www.kernel.org/doc/Documentation/vm/overcommit-accounting

Memory Overcommit

From https://www.kernel.org/doc/Documentation/vm/overcommit-
accounting:

The overcommit policy is set via the sysctl
vm.overcommit_memory
The default is 0 (heuristic overcommit)

Time Flows Backwards. . .

Root cause: Go’s time.Now() was not monotonic.

The Limitless Minefield

Date/time: overflow, timezone, daylight saving, etc.

Resulting type of division
Floating-point comparison
Issue that Java’s Binary Search implementation had
Use of unsigned integers
Supply-chain attacks (npm, PyPI, etc.)

The Limitless Minefield

Date/time: overflow, timezone, daylight saving, etc.
Resulting type of division

Floating-point comparison
Issue that Java’s Binary Search implementation had
Use of unsigned integers
Supply-chain attacks (npm, PyPI, etc.)

The Limitless Minefield

Date/time: overflow, timezone, daylight saving, etc.
Resulting type of division
Floating-point comparison

Issue that Java’s Binary Search implementation had
Use of unsigned integers
Supply-chain attacks (npm, PyPI, etc.)

The Limitless Minefield

Date/time: overflow, timezone, daylight saving, etc.
Resulting type of division
Floating-point comparison
Issue that Java’s Binary Search implementation had

Use of unsigned integers
Supply-chain attacks (npm, PyPI, etc.)

The Limitless Minefield

Date/time: overflow, timezone, daylight saving, etc.
Resulting type of division
Floating-point comparison
Issue that Java’s Binary Search implementation had
Use of unsigned integers

Supply-chain attacks (npm, PyPI, etc.)

The Limitless Minefield

Date/time: overflow, timezone, daylight saving, etc.
Resulting type of division
Floating-point comparison
Issue that Java’s Binary Search implementation had
Use of unsigned integers
Supply-chain attacks (npm, PyPI, etc.)

Supply-chain Attacks

Figure 1: A Latest Example

Supply-chain Attacks

Vara doesn’t have any extraneous dependencies

Wait, I didn’t mention what Vara is.

Supply-chain Attacks

Vara doesn’t have any extraneous dependencies

Wait, I didn’t mention what Vara is.

Wanted to Sketch. . . (detour)

Wanted to Sketch. . . (detour)

Wanted to Sketch. . . (detour)

Requirement: a libre drawing application for GNU/Linux that is
small, simple, usable, with pressure-sensitive brushes.

Krita

– great, but not small or simple
GIMP – good for editing, not for drawing
. . .

Easiest solution: stop sketching.

Second option: develop one.

Wanted to Sketch. . . (detour)

Requirement: a libre drawing application for GNU/Linux that is
small, simple, usable, with pressure-sensitive brushes.

Krita – great, but not small or simple

GIMP – good for editing, not for drawing
. . .

Easiest solution: stop sketching.

Second option: develop one.

Wanted to Sketch. . . (detour)

Requirement: a libre drawing application for GNU/Linux that is
small, simple, usable, with pressure-sensitive brushes.

Krita – great, but not small or simple
GIMP

– good for editing, not for drawing
. . .

Easiest solution: stop sketching.

Second option: develop one.

Wanted to Sketch. . . (detour)

Requirement: a libre drawing application for GNU/Linux that is
small, simple, usable, with pressure-sensitive brushes.

Krita – great, but not small or simple
GIMP – good for editing, not for drawing

. . .

Easiest solution: stop sketching.

Second option: develop one.

Wanted to Sketch. . . (detour)

Requirement: a libre drawing application for GNU/Linux that is
small, simple, usable, with pressure-sensitive brushes.

Krita – great, but not small or simple
GIMP – good for editing, not for drawing
. . .

Easiest solution: stop sketching.

Second option: develop one.

Wanted to Sketch. . . (detour)

Requirement: a libre drawing application for GNU/Linux that is
small, simple, usable, with pressure-sensitive brushes.

Krita – great, but not small or simple
GIMP – good for editing, not for drawing
. . .

Easiest solution: stop sketching.

Second option: develop one.

Wanted to Sketch. . . (detour)

Requirement: a libre drawing application for GNU/Linux that is
small, simple, usable, with pressure-sensitive brushes.

Krita – great, but not small or simple
GIMP – good for editing, not for drawing
. . .

Easiest solution: stop sketching.

Second option: develop one.

a.out (detour)

Day 1. Didn’t even bother to rename the binary. . .

Figure 2: 2023-05-11

a.out (detour)

Next day. . .

Figure 3: 2023-05-12

Vara (detour)

Next month. . .

Figure 4: 2023-06-14

Vara (detour)

Today. . .

Figure 5: 2024-08-23

Vara (detour)

Vara has:

Pressure-sensitive brushes with stroke smoothing
Layers, Undo/Redo, HSL
Brush presets, Quick palette, Keyboard shortcuts, Zooming
Save and open XCF, export PNG
Linear RGB internals and Gamma Correction

All in 11k lines of C, core processing done without any third-party
libraries.

Vara (detour)

Released on Flathub, Snap Store, etc.
Free/Open Source under GNU GPL v3.

Bootstrapping the Logo (detour)

Not creative, I agree, but at least it’s procedural. . .

Figure 6: Logo of Vara

. . . meaning it in itself is a test.

Bootstrapping the Logo (detour)

Not creative, I agree, but at least it’s procedural. . .

Figure 6: Logo of Vara

. . . meaning it in itself is a test.

Bootstrapping the Logo (detour)

Figure 7: A small portion from the code that draws the logo

Visual Tests (detour)

Apart from vara --test-nongui:

vara --test-sunset
vara --test

Back on Track. . .

But that’s not the point.

Not So Easy

Even for a simple drawing application, you need:

Anti-aliasing
Stroke smoothing
Premultiplied alpha
Gamma correction
Multiple color spaces/representations

Not So Easy

Figure 8: Anti-aliasing (left: with, right: without)

Not So Easy

Figure 9: Stroke Smoothing

What Was Wrong With This Picture?

Enter Gamma

Enter Gamma

Figure 10: Improper Figure 11: Proper

Gamma

Disclaimer: my explanation could be off.

Camera sensors, image processing engines, etc. use linear color
Linear: double the value, double the intensity
Human vision has a non-linear response
Store and transmit the images with non-linear encoding for
efficient use of bits
Multiply with Gamma
But this has to be undone before processing

Gamma

Disclaimer: my explanation could be off.

Camera sensors, image processing engines, etc. use linear color

Linear: double the value, double the intensity
Human vision has a non-linear response
Store and transmit the images with non-linear encoding for
efficient use of bits
Multiply with Gamma
But this has to be undone before processing

Gamma

Disclaimer: my explanation could be off.

Camera sensors, image processing engines, etc. use linear color
Linear: double the value, double the intensity

Human vision has a non-linear response
Store and transmit the images with non-linear encoding for
efficient use of bits
Multiply with Gamma
But this has to be undone before processing

Gamma

Disclaimer: my explanation could be off.

Camera sensors, image processing engines, etc. use linear color
Linear: double the value, double the intensity
Human vision has a non-linear response

Store and transmit the images with non-linear encoding for
efficient use of bits
Multiply with Gamma
But this has to be undone before processing

Gamma

Disclaimer: my explanation could be off.

Camera sensors, image processing engines, etc. use linear color
Linear: double the value, double the intensity
Human vision has a non-linear response
Store and transmit the images with non-linear encoding for
efficient use of bits

Multiply with Gamma
But this has to be undone before processing

Gamma

Disclaimer: my explanation could be off.

Camera sensors, image processing engines, etc. use linear color
Linear: double the value, double the intensity
Human vision has a non-linear response
Store and transmit the images with non-linear encoding for
efficient use of bits
Multiply with Gamma

But this has to be undone before processing

Gamma

Disclaimer: my explanation could be off.

Camera sensors, image processing engines, etc. use linear color
Linear: double the value, double the intensity
Human vision has a non-linear response
Store and transmit the images with non-linear encoding for
efficient use of bits
Multiply with Gamma
But this has to be undone before processing

Basics: Chroma and Alpha

(0, 0, 1, 0) - Fully transparent blue
(1, 1, 0, 0.5) - Half-transparent yellow
(0, 1, 1, 1) - Fully opaque cyan

(In case you care, this is straight alpha, not premultiplied.)

Alpha Compositing

Consider pixels A (top layer) and B (bottom layer). A has an alpha
α.

C = αA + (1 − α)B

Remember: If directly read from the input, you have Aγ , not A.

Now you know why the overlapping region was darker without
proper gamma processing.

Alpha Compositing

Consider pixels A (top layer) and B (bottom layer). A has an alpha
α.

C = αA + (1 − α)B

Remember: If directly read from the input, you have Aγ , not A.

Now you know why the overlapping region was darker without
proper gamma processing.

Alpha Compositing

Consider pixels A (top layer) and B (bottom layer). A has an alpha
α.

C = αA + (1 − α)B

Remember: If directly read from the input, you have Aγ , not A.

Now you know why the overlapping region was darker without
proper gamma processing.

Gamma

From https://blog.johnnovak.net/2016/09/21/what-every-coder-
should-know-about-gamma/:

The fact that most computer graphics textbooks don’t ex-
plicitly mention the importance of correct gamma handling,
or discuss it in practical terms, does not help matters at
all. . .

Premultiplied Alpha

Premultiplied alpha was “rejected in the design of PNG",
according to libpng.org
GIMP XCF does not use premultiplied alpha
libcairo uses premultiplied alpha
Premultiplied alpha is necessary at least internally for correct
compositing

ngg (detour)

Vara is not a side project;

it’s a side-side-project.

Vara is just an example for how useful ngg is.

Vara is written in ngg. If written directly in C, I’d still be chasing
segfaults instead of coding up the actual painting logic.

ngg (detour)

Vara is not a side project; it’s a side-side-project.

Vara is just an example for how useful ngg is.

Vara is written in ngg. If written directly in C, I’d still be chasing
segfaults instead of coding up the actual painting logic.

ngg (detour)

Vara is not a side project; it’s a side-side-project.

Vara is just an example for how useful ngg is.

Vara is written in ngg. If written directly in C, I’d still be chasing
segfaults instead of coding up the actual painting logic.

ngg (detour)

Vara is not a side project; it’s a side-side-project.

Vara is just an example for how useful ngg is.

Vara is written in ngg. If written directly in C, I’d still be chasing
segfaults instead of coding up the actual painting logic.

ngg (detour)

Strongly and statically typed
Multi-paradigm, mainly OOP
Semi-automatic memory management, Static reflection,
Templates, etc.
Tight integration with C
Generated code: modular, maintainable, near-zero overhead
Compiles to C (mature), Go, JavaScript, Assembly, etc. (WIP)
Self-hosted transpiler
In active development since 2019

ngg: Materialistic Stats (detour)

Example: ngg generates the 419kB C source code of Vara from
222kB of ngg source.

Read: ngg saved me 200k keystrokes and hours of insane debugging.

Read: I waste a lot of time developing things to develop things
instead of developing the things I should be developing.

ngg: Materialistic Stats (detour)

Example: ngg generates the 419kB C source code of Vara from
222kB of ngg source.

Read: ngg saved me 200k keystrokes and hours of insane debugging.

Read: I waste a lot of time developing things to develop things
instead of developing the things I should be developing.

ngg: Materialistic Stats (detour)

Example: ngg generates the 419kB C source code of Vara from
222kB of ngg source.

Read: ngg saved me 200k keystrokes and hours of insane debugging.

Read: I waste a lot of time developing things to develop things
instead of developing the things I should be developing.

ngg Example (detour)

ngg source:

class Person takes name own mstring ;

ngg Example (detour)
.c output:

typedef struct Person {
char * name;

} Person ;

void person_construct (Person *this , char * name)
{

this ->name = name;
}

void person_destruct (Person *this)
{

if(this ->name) {
free(this ->name);

}
}

ngg Example (detour)

.h output:

void person_construct (Person *this , char * name);
void person_destruct (Person *this);

ngg (detour)

The point - ngg was started to deal with pitfalls. Now it has:

Explicit nullable
Some notion of ownership (not as robust as Rust)
Better type safety (compared to C)

. . . and more.

Fruit for Thought

Undefined behaviour
Unspecified behaviour
Implementation-defined behaviour

Fruit for Thought

Is there a way to reliably determine if a piece of data has been
written to the disk?

Discussion

