
Git: A Developer’s Time Machine

Nandakumar Edamana

2025-01-16

Tracking Changes

Figure 1: Wikipedia article about Da Vinci

Tracking Changes

Figure 2: Edit History of the Wikipedia article

Tracking Changes

Figure 3: Details of one edit of the Wikipedia article

Version Control

I Keep track of the changes you make

I Locate and fix bugs easily
I Work independently on different features and merge them

cleanly
I Try out new features and rollback
I Protection from accidental data loss and corruption (to an

extent)
I Not just Git; Mercurial, Fossil, etc. (out-of-fashion: SVN, CVS,

Baazar)

Version Control

I Keep track of the changes you make
I Locate and fix bugs easily

I Work independently on different features and merge them
cleanly

I Try out new features and rollback
I Protection from accidental data loss and corruption (to an

extent)
I Not just Git; Mercurial, Fossil, etc. (out-of-fashion: SVN, CVS,

Baazar)

Version Control

I Keep track of the changes you make
I Locate and fix bugs easily
I Work independently on different features and merge them

cleanly

I Try out new features and rollback
I Protection from accidental data loss and corruption (to an

extent)
I Not just Git; Mercurial, Fossil, etc. (out-of-fashion: SVN, CVS,

Baazar)

Version Control

I Keep track of the changes you make
I Locate and fix bugs easily
I Work independently on different features and merge them

cleanly
I Try out new features and rollback

I Protection from accidental data loss and corruption (to an
extent)

I Not just Git; Mercurial, Fossil, etc. (out-of-fashion: SVN, CVS,
Baazar)

Version Control

I Keep track of the changes you make
I Locate and fix bugs easily
I Work independently on different features and merge them

cleanly
I Try out new features and rollback
I Protection from accidental data loss and corruption (to an

extent)

I Not just Git; Mercurial, Fossil, etc. (out-of-fashion: SVN, CVS,
Baazar)

Version Control

I Keep track of the changes you make
I Locate and fix bugs easily
I Work independently on different features and merge them

cleanly
I Try out new features and rollback
I Protection from accidental data loss and corruption (to an

extent)
I Not just Git; Mercurial, Fossil, etc. (out-of-fashion: SVN, CVS,

Baazar)

Git vs GitHub

I Git can run totally offline, without even a local server

I GitHub: an online platform to host and collaborate Git-based
projects

I Other: GitLab, BitBucket, etc.
I GitLab can be self-hosted
I openforge.gov.in

Git vs GitHub

I Git can run totally offline, without even a local server
I GitHub: an online platform to host and collaborate Git-based

projects

I Other: GitLab, BitBucket, etc.
I GitLab can be self-hosted
I openforge.gov.in

Git vs GitHub

I Git can run totally offline, without even a local server
I GitHub: an online platform to host and collaborate Git-based

projects
I Other: GitLab, BitBucket, etc.

I GitLab can be self-hosted
I openforge.gov.in

Git vs GitHub

I Git can run totally offline, without even a local server
I GitHub: an online platform to host and collaborate Git-based

projects
I Other: GitLab, BitBucket, etc.
I GitLab can be self-hosted

I openforge.gov.in

Git vs GitHub

I Git can run totally offline, without even a local server
I GitHub: an online platform to host and collaborate Git-based

projects
I Other: GitLab, BitBucket, etc.
I GitLab can be self-hosted
I openforge.gov.in

Git vs GitHub

I Git can run totally offline, without even a local server
I GitHub: an online platform to host and collaborate Git-based

projects
I Other: GitLab, BitBucket, etc.
I GitLab can be self-hosted
I openforge.gov.in

GitHub Profile

Figure 4: GitHub Badges

GitHub Contribution Types

Figure 5: GitHub Contribution Types

A Project on GitHub

Figure 6: scratch-www on GitHub (1)

A Project on GitHub

Figure 7: scratch-www on GitHub (2)

A Project on GitHub

Figure 8: scratch-www on GitHub (3)

Git in Action

git log output:

...
commit 668cf51dd378f815b1392bdbc0c08fb3bef53772
Author: Nandakumar Edamana <EMAIL>
Date: Wed May 24 07:03:51 2023 +0530

ui improvements including grid for viewport

commit 8048bab246e6d8e59a45cc7792bb93ee5e33c367
Author: Nandakumar Edamana <EMAIL>
Date: Wed May 24 06:54:44 2023 +0530

support hard brush strokes with anti-aliasing
...

Git in Action

How many commits did I create on Sundays?

$ git log|grep 'Sun '|wc -l
78

Git in Action

How many commits did I create on Sundays?

$ git log|grep 'Sun '|wc -l
78

Git Status
git status output:

Figure 9: git status

Terminology

States of a repo:

I Working Tree - files in your directory; sandbox; contains latest
modifications

I Index (Staging Area) - changes added for committing
I Branch History - changes committed, last snapshot denoted

by HEAD

One-time Setup for a User

git config --global user.name 'Your Name'
git config --global user.email ROLLNO@smail.iitpkd.ac.in

How to Start a Project

mkdir PROJECT-NAME
cd PROJECT-NAME

initialize a repo in the current directory
git init

rename the default branch `master`
git branch -m main

How to Start a Project

mkdir PROJECT-NAME
cd PROJECT-NAME

initialize a repo in the current directory
git init

rename the default branch `master`
git branch -m main

How to Start a Project

mkdir PROJECT-NAME
cd PROJECT-NAME

initialize a repo in the current directory
git init

rename the default branch `master`
git branch -m main

Adding Files and Committing

git add FILE1 FILE2 ...
git commit -m 'Commit message'

Example: Adding and Committing

Write, save, compile, and test a Hello World program
(say hello.c); then:

git add hello.c
git commit -m 'Basic version of Hello World'

Example: Adding and Committing (Stage 1)

git status after creation:

On branch master

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

hello.c

Example: Adding and Committing (Stage 2)

git status after git add hello.c:

On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: hello.c

Example: Adding and Committing (Stage 3)

git status after commit:

On branch master
nothing to commit, working tree clean

Example: Adding and Committing

Now edit hello.c to add some feature (say, color),
save, and test again; then:

git add hello.c
git commit -m 'Feature: add color to the output'

Example: Adding and Committing

git status after modifying hello.c, before adding and
committing:

On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: hello.c

no changes added to commit (use "git add" and/or "git commit -a")

State Changes

Time Action Working Tree Index History

0 empty clean empty

State Changes

Time Action Working Tree Index History

0 empty clean empty
1 Create hello.c hello.c (dirty) clean empty

State Changes

Time Action Working Tree Index History

0 empty clean empty
1 Create hello.c hello.c (dirty) clean empty
2 git add

hello.c
hello.c hello.c empty

State Changes

Time Action Working Tree Index History

0 empty clean empty
1 Create hello.c hello.c (dirty) clean empty
2 git add

hello.c
hello.c hello.c empty

3 git commit
hello.c

hello.c clean hello.c

State Changes

Time Action Working Tree Index History

0 empty clean empty
1 Create hello.c hello.c (dirty) clean empty
2 git add

hello.c
hello.c hello.c empty

3 git commit
hello.c

hello.c clean hello.c

4 Modify hello.c hello.c (dirty) clean hello.c (old)

Quiz

You committed the initial version of hello.c, modified it, and
committed again. Will you be able to access the initial version now?

Branching and Merging

Usual workflow:

git branch -v
git checkout -b feature-x

Modify, add, and commit files
like we've already seen; then:

git checkout main
git merge feature-x
git branch -d feature-x

Branching and Merging

Usual workflow:

git branch -v
git checkout -b feature-x

Modify, add, and commit files
like we've already seen; then:

git checkout main
git merge feature-x
git branch -d feature-x

Branching and Merging

Usual workflow:

git branch -v
git checkout -b feature-x

Modify, add, and commit files
like we've already seen; then:

git checkout main
git merge feature-x
git branch -d feature-x

Branching and Merging

. . .

git checkout main # (1)
git merge feature-x # (2)
git branch -d feature-x

I hello.c gets restored after (1) (i.e., feature-x gone), gets
updated again after (2)

Branching and Merging

. . .

git checkout main # (1)
git merge feature-x # (2)
git branch -d feature-x

I hello.c gets restored after (1) (i.e., feature-x gone), gets
updated again after (2)

Connected Workflow

+--------+
| | --------- clone, pull -----------> You
| | <----------- push -----------------'
| Remote |
| | --------- clone, pull -----------> Your friend
| | <----------- push -----------------'
+--------+

Connected Workflow

I git clone URL – create a local clone of the repo pointed by
URL

I git clone --depth=1 URL – shallow clone (no history);
useful if not contributing

I git pull – incorporate changes from the remote to the
current local branch

I git push – upload changes from all local branches to the
remote

I git remote -v – list remotes

Standard GitHub Workflow

1. File/pick an issue

2. Fork and clone your fork
3. Branch
4. Commit your changes and push
5. File Pull Request (aka Merge Request)
6. Upstream reviews, accepts/rejects the PR

Some of these actions are offered by the platform, not Git.

Standard GitHub Workflow

1. File/pick an issue
2. Fork and clone your fork

3. Branch
4. Commit your changes and push
5. File Pull Request (aka Merge Request)
6. Upstream reviews, accepts/rejects the PR

Some of these actions are offered by the platform, not Git.

Standard GitHub Workflow

1. File/pick an issue
2. Fork and clone your fork
3. Branch

4. Commit your changes and push
5. File Pull Request (aka Merge Request)
6. Upstream reviews, accepts/rejects the PR

Some of these actions are offered by the platform, not Git.

Standard GitHub Workflow

1. File/pick an issue
2. Fork and clone your fork
3. Branch
4. Commit your changes and push
5. File Pull Request (aka Merge Request)

6. Upstream reviews, accepts/rejects the PR

Some of these actions are offered by the platform, not Git.

Standard GitHub Workflow

1. File/pick an issue
2. Fork and clone your fork
3. Branch
4. Commit your changes and push
5. File Pull Request (aka Merge Request)
6. Upstream reviews, accepts/rejects the PR

Some of these actions are offered by the platform, not Git.

Standard GitHub Workflow

1. File/pick an issue
2. Fork and clone your fork
3. Branch
4. Commit your changes and push
5. File Pull Request (aka Merge Request)
6. Upstream reviews, accepts/rejects the PR

Some of these actions are offered by the platform, not Git.

Example: Cloning

git clone \
https://gitlab.gnome.org/GNOME/gnome-calculator.git

cd gnome-calculator

Now create a branch and start working
on your feature or fix

Git Counterparts of Standard Commands

I git mv
I git rm
I git grep

Don’t forget to commit after git mv and git rm.

Reset, Restore and Revert

Based on the section “Reset, restore and revert" from the man page:

I git revert - make a new commit that reverts other commits
(affects history)

I git restore - restore files in the working tree or the index1

from either the index or another commit
I git reset - move “the tip in order to add or remove commits

from the branch" (affects history)

The man page says: “git reset can also be used to restore the index,
overlapping with git restore."

1--staged

Best Practices

Make sure the following are not added:

I Secrets (passwords, keys, etc.)

I Executable binary files
I Anything that can be easily generated from the source that is

already included
I Proprietary files that you don’t have rights to

Best Practices

Make sure the following are not added:

I Secrets (passwords, keys, etc.)
I Executable binary files

I Anything that can be easily generated from the source that is
already included

I Proprietary files that you don’t have rights to

Best Practices

Make sure the following are not added:

I Secrets (passwords, keys, etc.)
I Executable binary files
I Anything that can be easily generated from the source that is

already included

I Proprietary files that you don’t have rights to

Best Practices

Make sure the following are not added:

I Secrets (passwords, keys, etc.)
I Executable binary files
I Anything that can be easily generated from the source that is

already included
I Proprietary files that you don’t have rights to

Best Practices

I Do not commit without checking status and diff

I Use meaningful commit messages
I Set and follow a convention (tense, lowercase, prefixes like

“fix:", etc.)
I Always branch
I Pull before you start working
I Avoid altering history after pushing; avoid force pushses in

general

Best Practices

I Do not commit without checking status and diff
I Use meaningful commit messages

I Set and follow a convention (tense, lowercase, prefixes like
“fix:", etc.)

I Always branch
I Pull before you start working
I Avoid altering history after pushing; avoid force pushses in

general

Best Practices

I Do not commit without checking status and diff
I Use meaningful commit messages
I Set and follow a convention (tense, lowercase, prefixes like

“fix:", etc.)

I Always branch
I Pull before you start working
I Avoid altering history after pushing; avoid force pushses in

general

Best Practices

I Do not commit without checking status and diff
I Use meaningful commit messages
I Set and follow a convention (tense, lowercase, prefixes like

“fix:", etc.)
I Always branch

I Pull before you start working
I Avoid altering history after pushing; avoid force pushses in

general

Best Practices

I Do not commit without checking status and diff
I Use meaningful commit messages
I Set and follow a convention (tense, lowercase, prefixes like

“fix:", etc.)
I Always branch
I Pull before you start working

I Avoid altering history after pushing; avoid force pushses in
general

Best Practices

I Do not commit without checking status and diff
I Use meaningful commit messages
I Set and follow a convention (tense, lowercase, prefixes like

“fix:", etc.)
I Always branch
I Pull before you start working
I Avoid altering history after pushing; avoid force pushses in

general

.gitignore

Demo

Referencing

I HEAD - Points to the latest commit in the branch history
I HEADˆn - nth parent commit of HEAD
I HEAD~n - nth predecessor commit of HEAD
I HEAD@{n} - where HEAD used to be n moves ago (you can

move HEAD around)

Learn Git

I Man pages: giteveryday(7), gittutorial(7), gitworkflows(7)
I Official documentation on https://git-scm.com/
I Interactive resources from platforms like GitHub and GitLab
I https://learngitbranching.js.org/ (game)

https://git-scm.com/
https://learngitbranching.js.org/

